Next-to-leading order QCD predictions for W+1 jet and W+2 jet production with at least one b jet at the 7 TeV LHC
Campbell, J Caola, F Cordero, F Reina, L Wackeroth, D Physical Review D volume 86 issue 3 034021 (01 Aug 2012)
Theoretical issues
Moch, S Rogal, M Vermaseren, J Vogt, A Altarelli, G Ball, R Ciafaloni, M Colferai, D Forte, S Salam, G Stásto, A Thorne, R White, C Beuf, G Caola, F Gelis, F Motyka, L Royon, C Sálek, D Proceedings of the Workshop - HERA and the LHC: Workshop Series on the Implications of HERA for LHC Physics, HERA-LHC 2006 - 2008 8-52 (01 Jan 2009)
NNLO corrections for LHC processes
Caola, F Proceedings of the 50th Rencontres de Moriond - 2015 QCD and High Energy Interactions 125-130 (01 Jan 2015)
High energy resummation for rapidity distributions
Marzani, S Caola, F Forte, S 19th International Workshop on Deep-Inelastic Scattering and Related Subjects, DIS 2011 (01 Jan 2011)
Fri, 04 Jun 2021

14:00 - 15:00
Virtual

The orbital diameter of affine and diagonal groups

Kamilla Rekvényi
(Imperial College London)
Abstract

Let $G$ be a group acting transitively on a finite set $\Omega$. Then $G$ acts on $\Omega \times \Omega$ componentwise. Define the orbitals to be the orbits of $G$ on $\Omega \times \Omega$. The diagonal orbital is the orbital of the form $\Delta = \{(\alpha, \alpha) \mid \alpha \in \Omega \}$. The others are called non-diagonal orbitals. Let $\Gamma$ be a non-diagonal orbital. Define an orbital graph to be the non-directed graph with vertex set $\Omega$ and edge set $(\alpha,\beta) \in \Gamma$ with $\alpha, \beta \in \Omega$. If the action of $G$ on $\Omega$ is primitive, then all non-diagonal orbital graphs are connected. The orbital diameter of a primitive permutation group is the supremum of the diameters of its non-diagonal orbital graphs.

There has been a lot of interest in finding bounds on the orbital diameter of primitive permutation groups. In my talk I will outline some important background information and the progress made towards finding specific bounds on the orbital diameter. In particular, I will discuss some results on the orbital diameter of the groups of simple diagonal type and their connection to the covering number of finite simple groups. I will also discuss some results for affine groups, which provides a nice connection to the representation theory of quasisimple groups. 

Strong suppression of heat conduction in a laboratory replica of
galaxy-cluster turbulent plasmas
Meinecke, J Tzeferacos, P Ross, J Bott, A Feister, S Park, H Bell, A Blandford, R Berger, R Bingham, R Casner, A Chen, L Foster, J Froula, D Goyon, C Kalantar, D Koenig, M Lahmann, B Li, C Lu, Y Palmer, C Petrasso, R Poole, H Remington, B Reville, B Reyes, A Rigby, A Ryu, D Swadling, G Zylstra, A Miniati, F Sarkar, S Schekochihin, A Lamb, D Gregori, G
Tue, 01 Jun 2021
12:00
Virtual

The nonlinear stability of the Schwarzschild family of black holes

Martin Taylor
(Imperial College)
Abstract

I will present a theorem on the full finite codimension nonlinear asymptotic stability of the Schwarzschild family of black holes.  The proof employs a double null gauge, is expressed entirely in physical space, and utilises the analysis of Dafermos--Holzegel--Rodnianski on the linear stability of the Schwarzschild family.  This is joint work with M. Dafermos, G. Holzegel and I. Rodnianski.

Thu, 27 May 2021

16:45 - 17:30

C*-equivalence of directed graphs

Soren Eilers
(Copenhagen)
Abstract

The graph C*-algebra construction associates a unital C*-algebra to any directed graph with finitely many vertices and countably many edges in a way which generalizes the fundamental construction by Cuntz and Krieger. We say that two such graphs are C*-equivalent when they define isomorphic C*-algebras, and give a description of this relation as the smallest equivalence relation generated by a number of "moves" on the graph that leave the C*-algebras unchanged. The talk is based on recent work with Arklint and Ruiz, but most of these moves have a long history that I intend to present in some detail.

Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Thu, 27 May 2021

16:00 - 16:45
Virtual

Jones index for subfactors

Emily Peters
(Loyola University Chicago)
Abstract

In this talk I will explain how a subfactor (ie an inclusion of type II_1 factors) give rise to a diagrammatic algebra called the Temperley-Lieb-Jones algebra. We will observe the connection between the index of the subfactor, and the TLJ algebra. In the TLJ algebra setting, we will observe that indices below four are discrete, while any number above four can be an index.

Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Subscribe to