Journals and metrics
Abstract
What is the purpose of journals? How should you choose what journal to submit a paper to? Should it be open access? And how would you like your work to be evaluated?
What is the purpose of journals? How should you choose what journal to submit a paper to? Should it be open access? And how would you like your work to be evaluated?
Cluster algebras: from finite to infinite -- Sira Gratz
Abstract: Cluster algebras were introduced by Fomin and Zelevinsky at the beginning of this millennium. Despite their relatively young age, strong connections to various fields of mathematics - pure and applied - have been established; they show up in topics as diverse as the representation theory of algebras, Teichmüller theory, Poisson geometry, string theory, and partial differential equations describing shallow water waves. In this talk, following a short introduction to cluster algebras, we will explore their generalisation to infinite rank.
Modelling the effects of data streams using rough paths theory -- Hao Ni
Abstract: In this talk, we bring the theory of rough paths to the study of non-parametric statistics on streamed data and particularly to the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a path or a stream. We explain how a certain graded feature set of a stream, known in the rough path literature as the signature of the path, has a universality that allows one to characterise the functional relationship summarising the conditional distribution of the dependent response. At the same time this feature set allows explicit computational approaches through linear regression. We give several examples to show how this low dimensional statistic can be effective to predict the effects of a data stream.
From the finite Fourier transform to topological quantum field theory -- Bruce Bartlett
Abstract: In 1979, Auslander and Tolimieri wrote the influential "Is computing with the finite Fourier transform pure or applied mathematics?". It was a homage to the indivisibility of our two subjects, by demonstrating the interwoven nature of the finite Fourier transform, Gauss sums, and the finite Heisenberg group. My talk is intended as a new chapter in this story. I will explain how all these topics come together yet again in 3-dimensional topological quantum field theory, namely Chern-Simons theory with gauge group U(1).
Defects in liquid crystals: mathematical approaches -- Giacomo Canevari
Abstract: Liquid crystals are matter in an intermediate state between liquids and crystalline solids. They are composed by molecules which can flow, but retain some form of ordering. For instance, in the so-called nematic phase the molecules tend to align along some locally preferred directions. However, the ordering is not perfect, and defects are commonly observed.
The mathematical theory of defects in liquid crystals combines tools from different fields, ranging from topology - which provides a convenient language to describe the main properties of defects -to calculus of variations and partial differential equations. I will compare a few mathematical approaches to defects in nematic liquid crystals, and discuss how they relate to each other via asymptotic analysis.
In this talk I'll give a general presentation of my recent work that a purely loxodromic Kleinian group of Hausdorff dimension<1 is a classical Schottky group. This gives a complete classification of all Kleinian groups of dimension<1. The proof uses my earlier result on the classification of Kleinian groups of sufficiently small Hausdorff dimension. This result in conjunction to another work (joint with Anderson) provides a resolution to Bers uniformization conjecture. No prior knowledge on the subject is assumed.
The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.
Torsion in homology are invariants that have received increasing attention over the last twenty years, by the work of Lück, Bergeron, Venkatesh and others. While there are various vanishing results, no one has found a finitely presented group where the torsion in the first homology is exponential over a normal chain with trivial intersection. On the other hand, conjecturally, every 3-manifold group should be an example.
A group is right angled if it can be generated by a list of infinite order elements, such that every element commutes with its neighbors. Many lattices in higher rank Lie groups (like SL(n,Z), n>2) are right angled. We prove that for a right angled group, the torsion in the first homology has subexponential growth for any Farber sequence of subgroups, in particular, any chain of normal subgroups with trivial intersection. We also exhibit right angled cocompact lattices in SL(n,R) (n>2), for which the Congruence Subgroup Property is not known. This is joint work with Nik Nikolov and Tsachik Gelander.
We establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding strong convexity and smoothness of the constituent functions in the optimization problem. However, there are several examples in the literature showing that linear convergence is possible even when these properties do not hold. We provide a unifying analysis method for establishing linear convergence based on linear regularity and show that many existing results are special cases of our approach.