Mon, 23 May 2016

15:45 - 16:45
C6

Conformal invariance of correlations in the planar Ising model.

KONSTANTIN IZYUROV
(University of Helsinki)
Abstract

The planar Ising model is one of the simplest and most studied models in Statistical Mechanics. On one hand, it has a rich and interesting phase transition behaviour. On the other hand, it is "solvable" enough to allow for many rigorous and exact results. This, in particular, makes it one of the prime examples in Conformal Field Theory (CFT). In this talk, I will review my joint work with C. Hongler and D. Chelkak on the scaling limits of correlations in the planar Ising model at criticality. We prove that these limits exist, are conformally covariant and given by explicit formulae consistent with the CFT predictions. This may be viewed as a step towards a rigorous understanding of CFT in the case of the Ising model.TBC

Mon, 23 May 2016

14:15 - 15:15
C6

Einstein relation and steady states for the random conductance model

NINA GANTERT
(T U Munich Germany)
Abstract

We consider the random conductance model: random walk among iid, uniformly elliptic conductnace on the d-dimensional lattice. We state,and explain, the Einstein relation for this model:It says that the derivative of the velocity of a biased walk as a function of the bias equals the diffusivity in equilibrium. For fixed bias, we show that there is an invariant measure for the environment seen from the particle.These invariant measures are often called steady states.

The Einstein relation follows, at least for dimensions three and larger, from an expansion of the steady states as a function of the bias.

The talk is gase on joint work with Jan Nagel and Xiaoqin Guo

 

Mon, 13 Jun 2016

14:15 - 15:15
C6

Asymptotic of planar Yang-Mills fields

ANTOINE DAHLQVIST
(University of Cambridge)
Abstract

This talk will be about  Lévy processes on compact groups - discrete or continuous - and  two-dimensional analogues called pure Yang-Mills fields. The latter are indexed by  reduced loops of finite length in the plane and satisfy properties analogue to independence and stationarity of increments.     There is a one-to-one correspondance between Lévy processes invariant by adjunction and pure Yang-Mills fields. For Brownian motions, Yang-Mills fields stand for a rigorous version of the Euclidean Yang-Mills measure in two dimension.  I shall first sketch this correspondance for  Lévy processes with large jumps. Then, I will discuss two applications of an extension theorem, due to Thierry Lévy, similar to Kolmogorov extension theorem. On the one hand, it allows to construct pure Yang-Mills fields for any invariant Lévy process. On the other hand, when the group acts on vector spaces of large dimension, this theorem also allows to study the asymptotic behavior  of traces. The limiting objects yield a natural family of states on the group algebra of reduced loops.  We characterize among them the master field defined by Thierry Lévy by a continuity property.   This is  a joint work with Guillaume Cébron and Franck Gabriel.

Mon, 16 May 2016

14:15 - 15:15
C6

Heat equation driven by a space-time fractional noise

AURELIEN DEYA
(university of Lorraine France)
Abstract

The extension of standard stochastic models (SDEs, SPDEs) to general fractional noises is known to be a tricky issue, which cannot be studied within the classical martingale setting. We will see how the recently-introduced theory of regularity structures allows us to overcome these difficulties, in the case of a heat equation model with non-linear perturbation driven by a space-time fractional Brownian motion.

The analysis relies in particular on the exhibition of an explicit process at the core of the dynamics, the so-called K-rough path, the definition of which shows strong similarities with that of a classical rough path.

Mon, 09 May 2016

15:45 - 16:45
C6

Global quantizations with and without symmetries

MICHAEL RUZHANSKY
(Imperial College London)
Abstract

In this talk we will give an overview of the recent research on global quantizations on spaces of different types: compact and nilpotent Lie groups, general locally compact groups, compact manifolds with boundary.

Mon, 09 May 2016

14:15 - 15:15
C6

Gaussian Heat-kernel for the RCM with unbounded conductances

OMAR BOUKHADRA
(University of Constantine 1)
Abstract

The talk will focus on continuous time random walk with unbounded i.i.d. random conductances on the grid $\mathbb{Z}^d$  In the first place, in a joint work with Kumagai and Mathieu, we obtain Gaussian heat kernel bounds and also local CLT for bounded from above and not bounded from below conductances. The proof is given at first in a general framework, then it is specified in the case of plynomial lower tail conductances. It is essentially based on percolation and spectral analysis arguments, and Harnack inequalities. Then we will discuss the same questions for the same model with i.i.d. random conductances, bounded from below and with finite expectation.

Thu, 02 Jun 2016

14:00 - 15:00
L5

CUR Matrix Factorizations: Algorithms, Analysis, Applications

Professor Mark Embree
(Virginia Tech)
Abstract
Interpolatory matrix factorizations provide alternatives to the singular value decomposition for obtaining low-rank approximations; this class includes the CUR factorization, where the C and R matrices are subsets of columns and rows of the target matrix.  While interpolatory approximations lack the SVD's optimality, their ingredients are easier to interpret than singular vectors: since they are copied from the matrix itself, they inherit the data's key properties (e.g., nonnegative/integer values, sparsity, etc.). We shall provide an overview of these approximate factorizations, describe how they can be analyzed using interpolatory projectors, and introduce a new method for their construction based on the
Discrete Empirical Interpolation Method (DEIM).  To conclude, we will use this algorithm to gain insight into accelerometer data from an instrumented building.  (This talk describes joint work with Dan Sorensen (Rice) and collaborators in Virginia Tech's Smart Infrastucture Lab.)

diophantine equation is an algebraic equation, or system of equations, in several unknowns and with integer (or rational) coefficients, which one seeks to solve in integers (or rational numbers). The study of such equations goes back to antiquity. Their name derives from the mathematician Diophantus of Alexandria, who wrote a treatise on the subject, entitled Arithmetica.

Mon, 20 Jun 2016
16:00
L1

Hardy Lecture: Formal Moduli Problems

Jacob Lurie
(Harvard)
Abstract

Let X be a complex algebraic variety containing a point x. One of the central ideas of deformation theory is that the local structure of X near the point x can be encoded by a differential graded Lie algebra. In this talk, Jacob Lurie will explain this idea and discuss some generalizations to more exotic contexts.

Subscribe to