Mon, 19 Feb 2018
12:45
L3

The decay width of stringy hadrons

Cobi Sonnenschein
(Tel Aviv)
Abstract

I will start with briefly describing the HISH ( Holography Inspired Hadronic String) model and reviewing the fits of the spectra of mesons, baryons, glue-balls and exotic hadrons. 

I will present the determination of the hadron strong decay widths. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as $\Gamma =\frac{\pi}{2}A T L $ where T and L are the tension and length of the string and A is a dimensionless universal constant. The partial width of a given decay mode is given by $\Gamma_i/\Gamma = \Phi_i \exp(-2\pi C m_\text{sep}^2/T$ where $\Phi_i$ is a phase space factor, $m_\text{sep}$ is the mass of the "quark" and "antiquark" created at the splitting point, and C is adimensionless coefficient close to unity. I will show the fits of the theoretical results to experimental data for mesons and baryons. I will examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons $A = 0.095\pm  0.01$  is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. I will discuss the relation with string fragmentation and jet formation. I will extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia will be proposed and will be shown to reproduce the decay width of  states. The dependence of the width on spin and symmetry will be discussed. I will further apply this model to the decays of glueballs and exotic hadrons.

 

 
 
 
Mon, 12 Feb 2018
12:45
L3

Universality at large transverse spin in defect CFT

Pedro Liendo
(DESY, Hamburg)
Abstract

We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our main result is a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function of CFTs without defects.

 
Electron acceleration by wave turbulence in a magnetized plasma
Rigby, A Cruz, F Albertazzi, B Bamford, R Bell, A Cross, J Fraschetti, F Graham, P Hara, Y Kozlowski, P Kuramitsu, Y Lamb, D Lebedev, S Marques, J Miniati, F Morita, T Oliver, M Reville, B Sakawa, Y Sarkar, S Spindloe, C Trines, R Tzeferacos, P Silva, L Bingham, R Koenig, M Gregori, G Nature Physics volume 14 issue 5 475-479 (01 May 2018)
Mon, 05 Feb 2018
12:45
L3

A universal geometry for heterotic vacua

Jock McOrist
(Surrey)
Abstract

I am interested in the moduli spaces of heterotic vacua. These are closely related to the moduli spaces of stable holomorphic bundles but in which the base and bundle vary simultaneously, together with additional constraints deriving from string theory. I will first summarise some pre-Brexit results we have derived. These include an explicit Kaehler metric and Kaehler potential for both the moduli space and its first cousin, the matter field space. I will secondly describe new, post-Brexit work in which these results are encased within an elegant geometry, which we call a universal heterotic geometry. Beyond compelling aesthetics, the framework is surprisingly useful giving both a concise derivation of our pre-Brexit results as well as some new results. 

 
 
Wed, 07 Mar 2018

14:00 - 15:00
L4

Uniform energy distribution for a non-local isoperimetric problem

Katarína Bellová
(Universität Leipzig)
Abstract

For energy functionals composed of competing short- and long-range interactions, minimizers are often conjectured to form essentially periodic patterns on some intermediate lengthscale. However,  not many detailed structural results or proofs of periodicity are known in dimensions larger than 1. We study a functional composed of  the attractive, local interfacial energy of charges concentrated on a hyperplane and the energy of the electric field generated by these charges in the full space, which can be interpreted as a repulsive, non-local functional of the charges. We follow the approach of Alberti-Choksi-Otto and prove that the energy of minimizers of this functional is uniformly distributed  on cubes intersecting the hyperplane, which are sufficiently large with respect to the intrinsic lengthscale.

This is a joint work with A. Julia and F. Otto.

Subscribe to