14:00
Tail asymptotics for extinction times of self-similar fragmentations
Abstract
Self-similar fragmentation processes are random models for particles that are subject to successive fragmentations. When the index of self-similarity is negative the fragmentations intensify as the masses of particles decrease. This leads to a shattering phenomenon, where the initial particle is entirely reduced to dust - a set of zero-mass particles - in finite time which is what we call the extinction time. Equivalently, these extinction times may be seen as heights of continuous compact rooted trees or scaling limits of heights of sequences of discrete trees. Our objective is to set up precise bounds for the large time asymptotics of the tail distributions of these extinction times.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
15:30
The uniform spanning tree in 4 dimensions
Abstract
A uniform spanning tree of $\mathbb{Z}^4$ can be thought of as the "uniform measure" on trees of $\mathbb{Z}^4$. The past of 0 in the uniform spanning tree is the finite component that is disconnected from infinity when 0 is deleted from the tree. We establish the logarithmic corrections to the probabilities that the past contains a path of length $n$, that it has volume at least $n$ and that it reaches the boundary of the box of side length $n$ around 0. Dimension 4 is the upper critical dimension for this model in the sense that in higher dimensions it exhibits "mean-field" critical behaviour. An important part of our proof is the study of the Newtonian capacity of a loop erased random walk in 4 dimensions. This is joint work with Tom Hutchcroft.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
14:00
Sparse expanders have negative Ollivier-Ricci curvature
Abstract
We prove that bounded-degree expanders with non-negative Ollivier-Ricci curvature do not exist, thereby solving a long-standing open problem suggested by Naor and Milman and publicized by Ollivier (2010). In fact, this remains true even if we allow for a vanishing proportion of large degrees, large eigenvalues, and negatively-curved edges. To establish this, we work directly at the level of Benjamini-Schramm limits. More precisely, we exploit the entropic characterization of the Liouville property on stationary random graphs to show that non-negative curvature and spectral expansion are incompatible 'at infinity'. We then transfer this result to finite graphs via local weak convergence and a relative compactness argument. We believe that this 'local weak limit' approach to mixing properties of Markov chains will have many other applications.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
14:00
Geodesic Geometry on Graphs
Abstract
We investigate a graph theoretic analog of geodesic geometry. In a graph $G=(V,E)$ we consider a system of paths $P=\{P_{u,v}| u,v\in V\}$ where $P_{u,v}$ connects vertices $u$ and $v$. This system is consistent in that if vertices $y,z$ are in $P_{u,v}$, then the sub-path of $P_{u,v}$ between them coincides with $P_{y,z}$. A map $w:E\to(0,\infty)$ is said to induce $P$ if for every $u,v\in V$ the path $P_{u,v}$ is $w$-geodesic. We say that $G$ is metrizable if every consistent path system is induced by some such $w$. As we show, metrizable graphs are very rare, whereas there exist infinitely many 2-connected metrizable graphs.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
15:30
Product structure theory and its applications
Abstract
I will introduce product structure theory of graphs and show how families of graphs that have such a structure admit short adjacency labeling scheme and small induced universal graphs. Time permitting, I will talk about another recent application of product structure theory, namely vertex ranking (coloring).
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
14:00
On the extension complexity of low-dimensional polytopes
Abstract
It is sometimes possible to represent a complicated polytope as a projection of a much simpler polytope. To quantify this phenomenon, the extension complexity of a polytope $P$ is defined to be the minimum number of facets in a (possibly higher-dimensional) polytope from which $P$ can be obtained as a (linear) projection. In this talk, we discuss some results on the extension complexity of random $d$-dimensional polytopes (obtained as convex hulls of random points on either on the unit sphere or in the unit ball), and on the extension complexity of polygons with all vertices on a common circle. Joint work with Matthew Kwan and Yufei Zhao
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
15:30
Random friends walking on random graphs
Abstract
Let $X$ and $Y$ be two $n$-vertex graphs. Identify the vertices of $Y$ with $n$ people, any two of whom are either friends or strangers (according to the edges and non-edges in $Y$), and imagine that these people are standing one at each vertex of $X$. At each point in time, two friends standing at adjacent vertices of $X$ may swap places, but two strangers may not. The friends-and-strangers graph $FS(X,Y)$ has as its vertex set the collection of all configurations of people standing on the vertices of $X$, where two configurations are adjacent when they are related via a single friendly swap. This provides a common generalization for the famous 15-puzzle, transposition Cayley graphs of symmetric groups, and early work of Wilson and of Stanley.
I will describe several recent results and open problems addressing the extremal and typical aspects of the notion, focusing on the result that the threshold probability for connectedness of $FS(X,Y)$ for two independent binomial random graphs $X$ and $Y$ in $G(n,p)$ is $p=p(n)=n-1/2+o(1)$.
Joint work with Colin Defant and Noah Kravitz.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
14:00
A solution to Erdős and Hajnal's odd cycle problem
Abstract
I will discuss how to construct cycles of many different lengths in graphs, in particular answering the following two problems on odd and even cycles. Erdős and Hajnal asked in 1981 whether the sum of the reciprocals of the odd cycle lengths in a graph diverges as the chromatic number increases, while, in 1984, Erdős asked whether there is a constant $C$ such that every graph with average degree at least $C$ contains a cycle whose length is a power of 2.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
16:00
Hypergraph regularity and higher arity VC-dimension
Abstract
We generalize the fact that all graphs omitting a fixed finite bipartite graph can be uniformly approximated by rectangles (Alon-Fischer-Newman, Lovász-Szegedy), showing that hypergraphs omitting a fixed finite $(k+1)$-partite $(k+1)$-uniform hypergraph can be approximated by $k$-ary cylinder sets. In particular, in the decomposition given by hypergraph regularity one only needs the first $k$ levels: such hypergraphs can be approximated using sets of vertices, sets of pairs, and so on up to sets of $k$-tuples, and on most of the resulting $k$-ary cylinder sets, the density is either close to 0 or close to 1. Moreover, existence of such approximations uniformly under all measures on the vertices is a characterization. Our proof uses a combination of analytic, combinatorial and model-theoretic methods, and involves a certain higher arity generalization of the epsilon-net theorem from VC-theory. Joint work with Henry Towsner.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.