Seeing Data through the lens of Geometry (Ollivier Ricci Curvature)
Abstract
Ollivier Ricci curvature is a notion originated from Riemannian Geometry and suitable for applying on different settings from smooth manifolds to discrete structures such as (directed) hypergraphs. In the past few years, alongside Forman Ricci curvature, this curvature as an edge based measure, has become a popular and powerful tool for network analysis. This notion is defined based on optimal transport problem (Wasserstein distance) between sets of probability measures supported on data points and can nicely detect some important features such as clustering and sparsity in their structures. After introducing this notion for (directed) hypergraphs and mentioning some of its properties, as one of the main recent applications, I will present the result of implementation of this tool for the analysis of chemical reaction networks.
Network structure influences visibility and ranking of minorities
Abstract
Homophily can put minority groups at a disadvantage by restricting their ability to establish connections with majority groups or to access novel information. In this talk, I show how this phenomenon is manifested in a variety of online and face-to-face social networks and what societal consequences it has on the visibility and ranking of minorities. I propose a network model with tunable homophily and group sizes and demonstrate how the ranking of nodes is affected by homophilic
behavior. I will discuss the implications of this research on algorithms and perception biases.
10:00
Generalizing Hyperbolicity via Local-to-Global Behaviour
Abstract
An important property of a Gromov hyperbolic space is that every path that is locally a quasi-geodesic is globally a quasi-geodesic. A theorem of Gromov states that this is a characterization of hyperbolicity, which means that all the properties of hyperbolic spaces and groups can be traced back to this simple fact. In this talk we generalize this property by considering only Morse quasi-geodesics.
We show that not only does this allow us to consider a much larger class of examples, such as CAT(0) spaces, hierarchically hyperbolic spaces and fundamental groups of 3-manifolds, but also we can effortlessly generalize several results from the theory of hyperbolic groups that were previously unknown in this generality.
FFTA: The growth equation of cities
Abstract
The science of cities seeks to understand and explain regularities observed in the world's major urban systems. Modelling the population evolution of cities is at the core of this science and of all urban studies. Quantitatively, the most fundamental problem is to understand the hierarchical organization of cities and the statistical occurrence of megacities, first thought to be described by a universal law due to Zipf, but whose validity has been challenged by recent empirical studies. A theoretical model must also be able to explain the relatively frequent rises and falls of cities and civilizations, and despite many attempts these fundamental questions have not been satisfactorily answered yet. Here we fill this gap by introducing a new kind of stochastic equation for modelling population growth in cities, which we construct from an empirical analysis of recent datasets (for Canada, France, UK and USA) that reveals how rare but large interurban migratory shocks dominate city growth. This equation predicts a complex shape for the city distribution and shows that Zipf's law does not hold in general due to finite-time effects, implying a more complex organization of cities. It also predicts the existence of multiple temporal variations in the city hierarchy, in agreement with observations. Our result underlines the importance of rare events in the evolution of complex systems and at a more practical level in urban planning.
arXiv link: https://arxiv.org/abs/2011.09403
FFTA: Compressibility of complex networks
Abstract
Many complex networks depend upon biological entities for their preservation. Such entities, from human cognition to evolution, must first encode and then replicate those networks under marked resource constraints. Networks that survive are those that are amenable to constrained encoding, or, in other words, are compressible. But how compressible is a network? And what features make one network more compressible than another? Here we answer these questions by modeling networks as information sources before compressing them using rate-distortion theory. Each network yields a unique rate-distortion curve, which specifies the minimal amount of information that remains at a given scale of description. A natural definition then emerges for the compressibility of a network: the amount of information that can be removed via compression, averaged across all scales. Analyzing an array of real and model networks, we demonstrate that compressibility increases with two common network properties: transitivity (or clustering) and degree heterogeneity. These results indicate that hierarchical organization -- which is characterized by modular structure and heavy-tailed degrees -- facilitates compression in complex networks. Generally, our framework sheds light on the interplay between a network's structure and its capacity to be compressed, enabling investigations into the role of compression in shaping real-world networks.
arXiv link: https://arxiv.org/abs/2011.08994