North meets South Colloquium
Abstract
Derived geometry and approximations - Pavel Safronov
Derived geometry has been developed to address issues arising in geometry from a consideration of spaces with intrinsic symmetry or some singular spaces arising as complicated intersections. It has been successful both in pure mathematics and theoretical physics where derived geometric structures appear in quantum gauge field theories such as the theory of quantum electrodynamics. Recently Lurie has developed a transparent approach to deformation theory, i.e. the theory of approximations of algebraic structures, using the language of derived algebraic geometry. I will motivate the theory on a basic example and explain one of the theorems in the subject.
_______________________________
How magnets and mathematics can help solve the current water crisis - Ian Griffiths
Although water was once considered an almost unlimited resource, population growth, drought and contamination are straining our water supplies. Up to 70% of deaths in Bangladesh are currently attributed to arsenic contamination, highlighting the essential need to develop new and effective ways of purifying water.
Since arsenic binds to iron oxide, magnets offer one such way of removing arsenic by simply pulling it from the water. For larger contaminants, filters with a spatially varying porosity can remove particles through selective sieving mechanisms.
Here we develop mathematical models that describe each of these scenarios, show how the resulting models give insight into the design requirements for new purification methods, and present methods for implementing these ideas with industry.
D-modules from the b-function and Hamiltonian flow
Abstract
Given a hypersurface, the Bernstein-Sato polynomial gives deep information about its singularities. It is defined by a D-module (the algebraic formalism of differential equations) closely related to analytic continuation of the gamma function. On the other hand, given a hypersurface (in a Calabi-Yau variety) one can also consider the Hamiltonian flow by divergence-free vector fields, which also defines a D-module considered by Etingof and myself. I will explain how, in the case of quasihomogeneous hypersurfaces with isolated singularities, the two actually coincide. As a consequence I affirmatively answer a folklore question (to which M. Saito recently found a counterexample in the non-quasihomogeneous case): if c$ is a root of the b-function, is the D-module D f^c / D f^{c+1} nonzero? We also compute this D-module, and for c=-1 its length is one more than the genus (conjecturally in the non-quasihomogenous case), matching an analogous D-module in characteristic p. This is joint work with Bitoun.
15:00
STAR-Vote: A Secure, Transparent, Auditable and Reliable Voting System
Abstract
STAR-Vote is voting system that results from a collaboration between a number of
academics and the Travis County, Texas elections office, which currently uses a
DRE voting system and previously used an optical scan voting system. STAR-Vote
represents a rare opportunity for a variety of sophisticated technologies, such
as end-to-end cryptography and risk limiting audits, to be designed into a new
voting system, from scratch, with a variety of real world constraints, such as
election-day vote centers that must support thousands of ballot styles and run
all day in the event of a power failure.
We present and motivate the design of the STAR-Vote system, the benefits that we
expect from it, and its current status.
This is based on joint work with Josh Benaloh, Mike Byrne, Philip Kortum,
Neal McBurnett, Ron Rivest, Philip Stark, Dan Wallach
and the Office of the Travis County Clerk
Global Nonlinear Stability of Minkowski Space for the Massless Einstein-Vlasov System
Abstract
14:30
Cycles in oriented 3-graphs
Abstract
It is easy to see that if a tournament (a complete oriented graph) has a directed cycle then it has a directed 3-cycle. We investigate the analogous question for 3-tournaments, and more generally for oriented 3-graphs.
14:30
Dirac's Theorem for Hypergraphs
Abstract
Cycles are fundamental objects in graph theory. A spanning cycle in a graph is also called a Hamiltonian cycle. The celebrated Dirac's Theorem in 1952 shows that every graph on $n\ge 3$ vertices with minimum degree at least $n/2$ contains a Hamiltonian cycle. In recent years, there has been a strong focus on extending Dirac’s Theorem to hypergraphs. We survey the results along the line and mention some recent progress on this problem. Joint work with Yi Zhao.