Wed, 14 Oct 2015
15:00
L4

The impact of quantum computing on cryptography

Steve Brierley
(University of Cambridge)
Abstract

This is an exciting time to study quantum algorithms. As the technological challenges of building a quantum computer continue to be met there is still much to learn about the power of quantum computing. Understanding which problems a quantum computer could solve faster than a classical device and which problems remain hard is particularly relevant to cryptography. We would like to design schemes that are secure against an adversary with a quantum computer. I'll give an overview of the quantum computing that is accessible to a general audience and use a recently declassified project called "soliloquy" as a case study for the development (and breaking) of post-quantum cryptography.

Thu, 03 Dec 2015
17:30
L6

Near-henselian fields - valuation theory in the language of rings

Franziska Jahnke
(Münster)
Abstract

Abstract: (Joint work with Sylvy Anscombe) We consider four properties 
of a field K related to the existence of (definable) henselian 
valuations on K and on elementarily equivalent fields and study the 
implications between them. Surprisingly, the full pictures look very 
different in equicharacteristic and mixed characteristic.

Thu, 19 Nov 2015
17:30
L6

Real, p-adic, and motivic oscillatory integrals

Raf Cluckers
(Lille/Leuven)
Abstract

In the real, p-adic and motivic settings, we will present recent results on oscillatory integrals. In the reals, they are related to subanalytic functions and their Fourier transforms. In the p-adic and motivic case, there are furthermore transfer principles and applications in the Langlands program. This is joint work with Comte, Gordon, Halupczok, Loeser, Miller, Rolin, and Servi, in various combinations. 
 

Thu, 12 Nov 2015
17:30
L6

Restricted trochotomy in dimension 1

Dmitri Sustretov
(Hebrew University of Jerusalem)
Abstract

Let M be an algebraic curve over an algebraically closed field and let
$(M, ...)$ be a strongly minimal non-locally modular structure with
basic relations definable in the full Zariski language on $M$. In this
talk I will present the proof of the fact that $(M, ...)$ interprets
an algebraically closed field.

Thu, 05 Nov 2015
17:30
L6

Decidability of the Zero Problem for Exponential Polynomials

James Worrell
(Computing Laboratory, Oxford)
Abstract

We consider the decision problem of determining whether an exponential
polynomial has a real zero.  This is motivated by reachability questions
for continuous-time linear dynamical systems, where exponential
polynomials naturally arise as solutions of linear differential equations.

The decidability of the Zero Problem is open in general and our results
concern restricted versions.  We show decidability of a bounded
variant---asking for a zero in a given bounded interval---subject to
Schanuel's conjecture.  In the unbounded case, we obtain partial
decidability results, using Baker's Theorem on linear forms in logarithms
as a key tool.  We show also that decidability of the Zero Problem in full
generality would entail powerful new effectiveness results concerning
Diophantine approximation of algebraic numbers.

This is joint work with Ventsislav Chonev and Joel Ouaknine.

Thu, 29 Oct 2015
17:30
L6

Joint Number Theroy/Logic Seminar: A minimalistic p-adic Artin-Schreier

Florian Pop
(University of Pennsylvania)
Abstract

In contrast to the Artin-Schreier Theorem, its p-adic analog(s) involve infinite Galois theory, e.g., the absolute Galois group of p-adic fields.  We plan to give a characterization of p-adic p-Henselian valuations in an essentially finite way. This relates to the Z/p metabelian form of the birational p-adic Grothendieck section conjecture.

Thu, 22 Oct 2015
17:30
L6

Definability in algebraic extensions of p-adic fields

Angus Macintyre
(Queen Mary University London)
Abstract

In the course of work with Jamshid Derakhshan on definability in adele rings, we came upon various problems about definability and model completeness for possibly infinite dimensional algebraic extensions of p-adic fields (sometimes involving uniformity across p). In some cases these problems had been closely approached in the literature but never  explicitly considered.I will explain what we have proved, and try to bring out many big gaps in our understanding of these matters. This  seems appropriate just over 50 years after the breakthroughs of Ax-Kochen and Ershov.

Subscribe to