11:30
Non-archimedean parametrizations and some bialgebraicity results
Abstract
We will provide a general overview on some recent work on non-archimedean parametrizations and their applications. We will start by presenting our work with Cluckers and Comte on the existence of good Yomdin-Gromov parametrizations in the non-archimedean context and a $p$-adic Pila-Wilkie theorem. We will then explain how this is used in our work with Chambert-Loir to prove bialgebraicity results in products of Mumford curves.
14:15
From calibrated geometry to holomorphic invariants
Abstract
Calibrated geometry, more specifically Calabi-Yau geometry, occupies a modern, rather sophisticated, cross-roads between Riemannian, symplectic and complex geometry. We will show how, stripping this theory down to its fundamental holomorphic backbone and applying ideas from classical complex analysis, one can generate a family of purely holomorphic invariants on any complex manifold. We will then show how to compute them, and describe various situations in which these invariants encode, in an intrinsic fashion, properties not only of the given manifold but also of moduli spaces.
Interest in these topics, if initially lacking, will arise spontaneously during this informal presentation.
Anna Seigal, one of Oxford Mathematics's Hooke Fellows and a Junior Research Fellow at The Queen's College, has been awarded the 2020 Society for Industrial and Applied Mathematics (SIAM) Richard C. DiPrima Prize. The prize recognises an early career researcher in applied mathematics and is based on their doctoral dissertation.