Thu, 14 May 2015

17:30 - 18:30
L6

Commutative 2-algebra, operads and analytic functors

Nicola Gambino
(Leeds)
Abstract

Standard commutative algebra is based on the notions of commutative monoid, Abelian group and commutative ring. In recent years, motivations from category theory, algebraic geometry, and mathematical logic led to the development of an area that may be called commutative 2-algebra, in which the notions used in commutative algebra are replaced by their category-theoretic counterparts (e.g. commutative monoids are replaced by  symmetric monoidal categories). The aim of this talk is to explain the analogy between standard commutative algebra and commutative 2-algebra, and to outline how this suggests counterparts of basic aspects of algebraic geometry. In particular, I will describe some joint work with Andre’ Joyal on operads and analytic functors in this context.

Thu, 07 May 2015

17:30 - 18:30
L5

Free actions of free groups on countable structures and property (T)

David Evans
(UEA)
Abstract

In joint work with Todor Tsankov, we show that the automorphism groups of countable, omega-categorical structures have Kazhdan's property (T). The proof uses Tsankov's work on the unitary representations of these groups, together with a construction of a particular free subgroup of the automorphism group.

Thu, 30 Apr 2015

17:30 - 18:30
L6

Strong type theories and their set-theoretic incarnations

Michael Rathjen
(Leeds)
Abstract

There is a tight fit between type theories à la Martin-Löf and constructive set theories such as Constructive Zermelo-Fraenkel set theory, CZF, and its extension as well as classical Kripke-Platek set theory and extensions thereof. The technology for determining their (exact) proof-theoretic strength was developed in the 1990s. The situation is rather different when it comes to type theories (with universes) having the impredicative type of propositions Prop from the Calculus of Constructions that features in some powerful proof assistants. Aczel's sets-as-types interpretation into these type theories gives rise to  rather unusual set-theoretic axioms: negative power set and negative separation. But it is not known how to determine the proof-theoretic strengths of intuitionistic set theories with such axioms via familiar classical set theories (though it is not difficult to see that ZFC plus infinitely many inaccessibles provides an upper bound). The first part of the talk will be a survey of known results from this area. The second part will be concerned with the rather special computational and proof-theoretic behavior of such theories.

Tue, 12 May 2015

17:00 - 18:00
C2

Permutation groups, primitivity and derangements

Tim Burness
(Bristol)
Abstract

Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.

Academic Faculty, Affiliate Faculty, Research Fellows, Postdoctoral Research Assistants, and Postgraduate Students.
Subscribe to