James Maynard has been awarded a Clay Research Fellowship. James obtained his doctorate at Oxford in 2013 under the supervision of Roger Heath-Brown and is currently a Fellow by Examination at Magdalen College, Oxford. James is primarily interested in classical number theory, in particular the distribution of prime numbers. His research focuses on using tools from analytic number theory, particularly sieve methods, to study the primes.
Generalised geometry for supergravity and flux vacua
Abstract
Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.
14:30
Local resilience of spanning subgraphs in sparse random graphs
Abstract
Dellamonica, Kohayakawa, Rödl and Ruciński showed that for $p=C(\log n/n)^{1/d}$ the random graph $G(n,p)$ contains asymptotically almost surely all spanning graphs $H$ with maximum degree $d$ as subgraphs. In this talk I will discuss a resilience version of this result, which shows that for the same edge density, even if a $(1/k-\epsilon)$-fraction of the edges at every vertex is deleted adversarially from $G(n,p)$, the resulting graph continues to contain asymptotically almost surely all spanning $H$ with maximum degree $d$, with sublinear bandwidth and with at least $C \max\{p^{-2},p^{-1}\log n\}$ vertices not in triangles. Neither the restriction on the bandwidth, nor the condition that not all vertices are allowed to be in triangles can be removed. The proof uses a sparse version of the Blow-Up Lemma. Joint work with Peter Allen, Julia Ehrenmüller, Anusch Taraz.
14:30
Monochromatic cycle partitions - an exact result
Abstract
14:30
Points in almost general position
Abstract
Erdős asked the following question: given a positive integer $n$, what is the largest integer $k$ such that any set of $n$ points in a plane, with no $4$ on a line, contains $k$ points no $3$ of which are collinear? Füredi proved that $k = o(n)$. Cardinal, Toth and Wood extended this result to $\mathbb{R}^3$, finding sets of $n$ points with no $5$ on a plane whose subsets with no $4$ points on a plane have size $o(n)$, and asked the question for the higher dimensions. For given $n$, let $k$ be largest integer such that any set of $n$ points in $\mathbb{R}^d$ with no more than $d + 1$ cohyperplanar points, has $k$ points with no $d + 1$ on a hyperplane. Is $k = o(n)$? We prove that $k = o(n)$ for any fixed $d \geq 3$.
BRST Cohomology, Extraordinary Invariants and the Zen Splitting of SUSY
Abstract
The chiral scalar superfield has interesting BRST cohomology, but the relevant cohomology objects all have spinor indices. So they cannot occur in an action. They need to be coupled to a chiral dotted spinor superfield. Until now, this has been very problematic, since no sensible action for a chiral dotted spinor superfield was known. The most obvious such action contains higher derivatives and tachyons.
Now, a sensible action has been found. When coupled to the cohomology, this action removes the supersymmetry charge from the theory while maintaining the rigidity and power of supersymmetry.The simplest example of this phenomenon has exactly the fermion content of the Leptons or the Quarks. The mechanism has the potential to get around the cosmological constant problem, and also the problem of the sum rules of spontaneously broken supersymmetry.
Symmetry enhancement near horizons
Abstract
I shall demonstrate, under some mild assumptions, that the symmetry group of extreme, Killing, supergravity horzions contains an sl(2, R) subalgebra. The proof requires a generalization of the Lichnerowicz theorem for non-metric connections. The techniques developed can also be applied in the classification
of AdS and Minkowski flux backgrounds.
We are delighted to annouce that PROMYS Europe will take place in Oxford in July and August of this year. Building on the hugely successful PROMYS programmes in the USA, PROMYS Europe is a challenging programme designed to encourage mathematically ambitious secondary school students to explore the creative world of mathematics. PROMYS is about asking and answering challenging questions, hard work and experiencing the sheer pleasure and beauty of mathematics.
Model theory and the distribution of orders in number fields
Abstract