Stabilisation of the Navier–Stokes equations on under-resolved meshes via enstrophy preservation
Abstract
The typical energy estimate for the Navier-Stokes equations provides a bound for the gradient of the velocity; energy-stable numerical methods that preserve this estimate preserve this bound. However, the bound scales with the Reynolds number (Re) causing solutions to be numerically unstable (i.e. exhibit spurious oscillations) on under-resolved meshes. The dissipation of enstrophy on the other hand provides, in the transient 2D case, a bound for the gradient that is independent of Re.
We propose a finite-element integrator for the Navier-Stokes equations that preserves the evolution of both the energy and enstrophy, implying gradient bounds that are, in the 2D case, independent of Re. Our scheme is a mixed velocity-vorticity discretisation, making use of a discrete Stokes complex. While we introduce an auxiliary vorticity in the discretisation, the energy- and enstrophy-stability results both hold on the primal variable, the velocity; our scheme thus exhibits greater numerical stability at large Re than traditional methods.
We conclude with a demonstration of numerical results, and a discussion of the existence and uniqueness of solutions.