12:00
12:00
12:00
Meaning of infinities in singular SPDEs
Abstract
On the number of nodal domains of toral eigenfunctions
Abstract
We study the number of nodal domains of toral Laplace eigenfunctions. Following Nazarov-Sodin's results for random fields and Bourgain's de-randomisation procedure we establish a precise asymptotic result for "generic" eigenfunctions. Our main results in particular imply an optimal lower bound for the number of nodal domains of generic toral eigenfunctions.
Hecke eigenvalue congruences and experiments with degree-8 L-functions
Abstract
I will describe how the moduli of various congruences between Hecke eigenvalues of automorphic forms ought to show up in ratios of critical values of $\text{GSP}_2 \times \text{GL}_2$ L-functions. To test this experimentally requires the full force of Farmer and Ryan's technique for approximating L-values given few coefficients in the Dirichlet series.
Badly approximable points
Abstract
I will discuss the notion of badly approximable points and recent progress and problems in this area, including Schmidt's conjecture, badly approximable points on manifolds and real numbers badly approximable by algebraic numbers.
Lattice point problems in hyperbolic spaces
Abstract
TBA
Iwasawa theory for the symmetric square of a modular form
Abstract
Iwasawa theory is a powerful technique for relating the behaviour of arithmetic objects to the special values of L-functions. Iwasawa originally developed this theory in order to study the class groups of number fields, but it has since been generalised to many other settings. In this talk, I will discuss some new results in the Iwasawa theory of the symmetric square of a modular form. This is a joint project with Sarah Zerbes, and the main tool in this work is the Euler system of Beilinson-Flach elements, constructed in our earlier works with Kings and Lei.
Height of rational points on elliptic curves in families
Abstract
Given a family $F$ of elliptic curves defined over $Q$, we are interested in the set $H(Y)$ of curves $E$ in $F$, of positive rank, and for which the minimum of the canonical heights of non-torsion rational points on $E$ is bounded by some parameter $Y$. When one can show that this set is finite, it is natural to investigate statistical properties of arithmetic objects attached to elliptic curves in the set $H(Y)$. We will describe some problems related to this, and will state some results in the case of families of quadratic twists of a fixed elliptic curve.