Thu, 12 Mar 2015

17:30 - 18:30
L6

Rosenthal compacta and NIP formulas

Pierre Simon
(Université Lyon I)
Abstract

A compact space is a Rosenthal compactum if it can be embedded into the space of Baire class 1 functions on a Polish space. Those objects have been well studied in functional analysis and set theory. In this talk, I will explain the link between them and the model-theoretic notion of NIP and how they can be used to prove new results in model theory on the topology of the space of types.
 

Thu, 05 Mar 2015

11:00 - 12:30
C5

QE in ACFA is PR

Ivan Tomasic
(QMUL)
Abstract

NOTE CHANGE OF TIME AND PLACE

It is known by results of Macintyre and Chatzidakis-Hrushovski that the theory ACFA of existentially closed difference fields is decidable. By developing techniques of difference algebraic geometry, we view quantifier elimination as an instance of a direct image theorem for Galois formulae on difference schemes. In a context where we restrict ourselves to directly presented difference schemes whose definition only involves algebraic correspondences, we develop a coarser yet effective procedure, resulting in a primitive recursive quantifier elimination. We shall discuss various algebraic applications of Galois stratification and connections to fields with Frobenius.

 

Oxford University will play a key role in the creation and the activities of the new Alan Turing Institute. The Institute will build on the UK's existing academic strengths and help position the country as a world leader in the analysis and application of big data and algorithm research. Its headquarters will be based at the British Library in London.

Oxford is one of the five universities selected to lead the Alan Turing Institute, Rt Hon Dr Vince Cable, Secretary of State for Business, Innovation and Skills, announced today.

James Maynard has been awarded a Clay Research Fellowship.  James obtained his doctorate at Oxford in 2013 under the supervision of Roger Heath-Brown and is currently a Fellow by Examination at Magdalen College, Oxford. James is primarily interested in classical number theory, in particular the distribution of prime numbers. His research focuses on using tools from analytic number theory, particularly sieve methods, to study the primes.

Mon, 09 Feb 2015

12:00 - 13:00
L5

Generalised geometry for supergravity and flux vacua

Charles Strickland-Constable
(CEA/Saclay)
Abstract

Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.
 

Tue, 10 Mar 2015
14:30
L6

Local resilience of spanning subgraphs in sparse random graphs

Julia Böttcher
(London School of Economics)
Abstract

Dellamonica, Kohayakawa, Rödl and Ruciński showed that for $p=C(\log n/n)^{1/d}$ the random graph $G(n,p)$ contains asymptotically almost surely all spanning graphs $H$ with maximum degree $d$ as subgraphs. In this talk I will discuss a resilience version of this result, which shows that for the same edge density, even if a $(1/k-\epsilon)$-fraction of the edges at every vertex is deleted adversarially from $G(n,p)$, the resulting graph continues to contain asymptotically almost surely all spanning $H$ with maximum degree $d$, with sublinear bandwidth and with at least $C \max\{p^{-2},p^{-1}\log n\}$ vertices not in triangles. Neither the restriction on the bandwidth, nor the condition that not all vertices are allowed to be in triangles can be removed. The proof uses a sparse version of the Blow-Up Lemma. Joint work with Peter Allen, Julia Ehrenmüller, Anusch Taraz.

Tue, 17 Feb 2015
14:30
L6

Monochromatic cycle partitions - an exact result

Shoham Letzter
(Cambridge University)
Abstract
In 2011, Schelp introduced the idea of considering Ramsey-Turán type problems for graphs with large minimum degree. Inspired by his questions, Balogh, Barat, Gerbner, Gyárfás, and Sárközy suggested the following conjecture. Let $G$ be a graph on $n$ vertices with minimum degree at least $3n/4$. Then for every red and blue colouring of the edges of $G$, the vertices of $G$ may be partitioned into two vertex-disjoint cycles, one red and the other blue. They proved an approximate version of the conjecture, and recently DeBiasio and Nelsen obtained stronger approximate results. We prove the conjecture exactly (for large $n$). I will give an overview of the history of this problem and describe some of the tools that are used for the proof. I will finish with a discussion of possible future work for which the methods we use may be applicable.
Tue, 10 Feb 2015
14:30
L6

Points in almost general position

Luka Milicevic
(Cambridge University)
Abstract

Erdős asked the following question: given a positive integer $n$, what is the largest integer $k$ such that any set of $n$ points in a plane, with no $4$ on a line, contains $k$ points no $3$ of which are collinear? Füredi proved that $k = o(n)$. Cardinal, Toth and Wood extended this result to $\mathbb{R}^3$, finding sets of $n$ points with no $5$ on a plane whose subsets with no $4$ points on a plane have size $o(n)$, and asked the question for the higher dimensions. For given $n$, let $k$ be largest integer such that any set of $n$ points in $\mathbb{R}^d$ with no more than $d + 1$ cohyperplanar points, has $k$ points with no $d + 1$ on a hyperplane. Is $k = o(n)$? We prove that $k = o(n)$ for any fixed $d \geq 3$.

Subscribe to