Wed, 28 Jan 2015

16:00 - 17:00
C1

Diameters, Random Walks and the Nottingham Group

Henry Bradford
(Oxford)
Abstract

The Nottingham Group of a finite field is an object of great interest in profinite group theory, owing to its extreme structural properties and the relative ease with which explicit computations can be made within it. In this talk I shall explore both of these themes, before describing some new work on efficient short-word approximation in the Nottingham Group, based on the profinite Solovay-Kitaev procedure. Time permitting, I shall give an application to the dynamics of compositions of random power series.

Wed, 21 Jan 2015

16:00 - 17:00
C1

On subgroup structure of Wilson type groups

Matteo Vannacci
(Royal Holloway, University of London)
Abstract
Wilson type groups are the first known examples of hereditarily just infinite (h.j.i.) profinite groups which are not virtually pro-p. In this talk I will firstly present a short survey on just infinite groups and where h.j.i. groups appeared. Secondly I will present the construction of Wilson type groups via iterated wreath products and finally I will discuss results obtained in my PhD regarding the Hausdorff dimension and the subgroup growth of these groups.
Tue, 27 Jan 2015

14:30 - 15:00
L5

The Closest Point Method and Multigrid solvers for elliptic equations on surfaces.

Yujia Chen
(University of Oxford)
Abstract

This talk concerns the numerical solution of elliptic partial differential equations posed on general smooth surfaces by the Closest Point Method. Based on the closest point representation of the surface, we formulate an embedding equation in a narrow band surrounding the surface, then discretize it using standard finite differences and interpolation schemes. Numerical convergence of the method will be discussed. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method which makes use of the closest point representation of the surface.
 

Tue, 27 Jan 2015

14:00 - 14:30
L5

Three-field block-preconditioners for models of coupled magma/mantle dynamics

Sander Rhebergen
(University of Oxford)
Abstract

We discuss the iterative solution of a finite element discretisation of the magma dynamics equations.  These equations share features of the Stokes equations, however, Elman-Silvester-Wathen (ESW) preconditioners for the magma dynamics equations are not optimal. By introducing a new field, the compaction pressure, into the magma dynamics equations, we have developed a new three-field preconditioner which is optimal in terms of problem size and less sensitive to physical parameters compared to the ESW preconditioners.

Wed, 11 Mar 2015
16:00
C2

tba

Chris Good
(Birmingham)
Wed, 04 Mar 2015
16:00
C2

Analytic Topology in Mathematics and Computer Science - postponed until later date

Martin Escardo
(Birmingham)
Abstract

 Voevodsky asked what the topology of the universe is in a 
continuous interpretation of type theory, such as Johnstone's 
topological topos. We can actually give a model-independent answer: it 
is indiscrete. I will briefly introduce "intensional Martin-Loef type 
theory" (MLTT) and formulate and prove this in type theory (as opposed 
to as a meta-theorem about type theory). As an application or corollary, 
I will also deduce an analogue of Rice's Theorem for the universe: the 
universe (the large type of all small types) has no non-trivial 
extensional, decidable properties. Topologically this is the fact that 
it doesn't have any clopens other than the trivial ones.

Subscribe to