16:00
The exceptional zero conjecture for GL(3)
Abstract
The BSD conjecture predicts that a rational elliptic curve $E$ has infinitely many points if and only if its $L$-function vanishes at $s=1$.
There are $p$-adic versions of similar phenomena. If $E$ is $p$-ordinary, there is, for example, a $p$-adic analytic analogue $L_p(E,s)$ of the $L$-function, and if $E$ has good reduction, then it has infinitely many rational points iff $L_p(E,1) = 0$. However if $E$ has split multiplicative reduction at $p$ - that is, if $E/\mathbf{Q}_p$ admits a Tate uniformisation $\mathbf{C}_p^{\times}/q^{\mathbf{Z}}$ - then $L_p(E,1) = 0$ for trivial reasons, regardless of $L(E,1)$; it has an 'exceptional zero'. Mazur--Tate--Teitelbaum's exceptional zero conjecture, proved by Greenberg--Stevens in '93, states that in this case the first derivative $L_p'(E,1)$ is much more interesting: it satisfies $L_p'(E,1) = \mathrm{log}(q)/\mathrm{ord}(q) \times L(E,1)/(\mathrm{period})$. In particular, it should vanish iff $L(E,1) = 0$ iff $E(\mathbf{Q})$ is infinite; and even better, it has a beautiful and surprising connection to the Tate period $q$, via the 'L-invariant' $\mathrm{log}(q)/\mathrm{ord}(q)$.
In this talk I will discuss exceptional zero phenomena and L-invariants, and a generalisation of the exceptional zero conjecture to automorphic representations of GL(3). This is joint work in progress with Daniel Barrera and Andrew Graham.


The old stock Mathematical Institute merchandise is going on sale next Thursday, March 13th at 12 noon in the North Mezzanine.