Thu, 06 Nov 2025
14:00
L4

Journal Club Cancelled

Abstract

There will be no journal club this week to avoid conflicting with FPUK.

Thu, 30 Oct 2025
14:00
L4

Sine dilaton gravity: wormholes, finite matrices and q-holography

Jacopo Papalini (Ghent University)
Abstract

I will discuss a two-dimensional dilaton gravity theory with a sine potential. At the disk level, this theory admits a microscopic holographic realization as the double-scaled SYK model. Remarkably, in the open channel canonical quantization of the theory, the momentum conjugate to the length of two-sided Cauchy slices becomes periodic. As a result, the ERB length in sine dilaton gravity is discretized upon gauging this symmetry. For closed Cauchy slices, a similar discretization occurs in the physical Hilbert space, corresponding to a discrete spectrum for the length of the necks of trumpet geometries. By appropriately gluing two such trumpets together, one can then construct a wormhole geometry in sine dilaton gravity, whose amplitude matches the spectral correlation functions of a one-cut matrix integral. This correspondence suggests that the theory provides a path integral formulation of q-deformed JT gravity, where the matrix size is large but finite. Finally, I will describe how this theory of gravity can be regarded as a realization of q-deformed holography and propose a possible implementation of this framework to study the near-horizon dynamics of near-extremal de Sitter black holes.

Thu, 23 Oct 2025
14:00
L4

Multifold Schwinger-Keldysh EFT -- what I understand and what I don't

Akash Jain
Abstract

The organisers asked me to give a brief talk on what I’ve been thinking about lately. So, I’ll tell you about Schwinger-Keldysh EFTs: an EFT framework for non-equilibrium dissipative systems such as hydrodynamics. These are built on a closed-time contour that runs forward and backward in time, allowing access to a variety of non-equilibrium observables. However, these EFTs fundamentally miss a wider class of observables, called out-of-time-ordered correlators (OTOCs), which are closely tied to quantum chaos. In this talk, I’ll share some thoughts on extending Schwinger-Keldysh EFTs to multifold contours that capture such observables. I’ll also touch on the discrete KMS symmetry of thermal systems, which generalises from Z_2 in the single-fold case to the dihedral group in the -fold case. With any luck, I’ll reach the point where I’m stuck and you can help me figure it out.

Thu, 16 Oct 2025
15:00
L6

Operator algebras meet (generalized) global symmetries

Andrea Antinucci
Abstract

Two different, almost orthogonal approaches to QFT are: (1) the study of von Neumann algebras of local observables in flat space, and (2) the study of extended and topological defects in general spacetime manifolds. While naively the two focus on different aspects, it has been recently pointed out that some of the axioms of approach (1) clash with certain expectations from approach (2). In this JC talk, I’ll give a brief introduction to both approaches and review the recent discussion in [2008.11748], [2503.20863], and [2509.03589], explaining (i) what the tensions are, (ii) a recent proposal to solve them, and (iii) why it can be useful.

Short reachability networks
Groenland, C Johnston, T Radcliffe, J Scott, A Discrete Mathematics & Theoretical Computer Science
Tue, 18 Nov 2025

15:30 - 16:30
Online

Separation of roots of random polynomials

Marcus Michelen
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What do the roots of random polynomials look like? Classical works of Erdős-Turán and others show that most roots are near the unit circle and they are approximately rotationally equidistributed. We will begin with an understanding of why this happens and see how ideas from extremal combinatorics can mix with analytic and probabilistic arguments to show this. Another main feature of random polynomials is that their roots tend to "repel" each other. We will see various quantitative statements that make this rigorous. In particular, we will study the smallest separation $m_n$ between pairs of roots and show that typically $m_n$ is on the order of $n^{-5/4}$. We will see why this reflects repulsion between roots and discuss where this repulsion comes from. This is based on joint work with Oren Yakir.

Subscribe to