Thu, 26 Feb 2026
17:00
L3

TBA

Amador Martin-Pizarro
(Universitat Freiburg)
Thu, 12 Feb 2026
17:00
L3

Sum-product phenomena for algebraic groups and uniformity

Harry Schmidt
(Warwick University)
Abstract
The classical sum-product phenomena refers to the fact that for any finite set of natural numbers, either its sum set or its product set is large. Erdös--Szemerédi conjectured a sharp lower bound for the maximum of the two. This conjecture is still open but various weaker versions have been shown. Bays--Breuillard generalized this phenomenon to algebraic groups. Further generalizations have been proved by Chernikov--Peterzil--Starchenko. Both of those groups used a mixture of model theory and incidence geometry. In joint work with Harrison and Mudgal we prove a Bourgain--Chang type result for complex algebraic groups of dimension 1. We use substantially different methods than the previous groups. Time permitting, I will also talk about applications of our methods to a question of Bremner.
Thu, 05 Feb 2026
17:00
L3

Ehrenfeucht–Fraïssé-type games in metric model theory

Joni Puljujarvi
(UCL)
Abstract
We survey some results in the model theory of metric structures related to different generalisations of the classic Ehrenfeucht–Fraïssé game. Namely, we look at a game of length $\omega$ that is used to characterise separable structures up to different notions of approximate isomorphism (such as linear isomorphisms between Banach spaces) in a framework that resembles that of positive bounded formulas. Additionally, we look at the (finite-length) EF game for continuous first-order logic and its variant of Ehrenfeucht's theorem. Last, we mention recent work on game comonads for continuous logic.
Thu, 29 Jan 2026
17:00
L3

Sum-product phenomena in arbitrary rings and related problems via model theory

Simon Machado
(ETH Zurick)
Abstract

Approximate subrings are subsets $A$ of a ring $R$ satisfying \[ A + A + AA \subset F + A \] for some finite $F \subset R$. They encode the failure of sum-product phenomena, much like approximate subgroups encode failure of growth in groups.

I will discuss how approximate subrings mirror approximate subgroups and how model-theoretic tools, such as a stabilizer lemma for approximate subrings due to Krupiński, lead to structural results implying a general, non-effective sum-product phenomenon in arbitrary rings: either sets grow rapidly under sum and product, or nilpotent ideals govern their structure. I will also outline related results for infinite approximate subrings and conjectures unifying known (effective) sum-product phenomena.

Based on joint work with Krzysztof Krupiński.

Thu, 22 Jan 2026
17:00
L3

Semi-Pfaffian geometry - tools, and applications

Abhiram Natarajan
(Warwick University)
Abstract

We generalize the seminal polynomial partitioning theorems of Guth and Katz [1, 2] to a set of semi-Pfaffian sets. Specifically, given a set $\Gamma \subseteq \mathbb{R}^n$ of $k$-dimensional semi-Pfaffian sets, where each $\gamma \in \Gamma$ is defined by a fixed number of Pfaffian functions, and each Pfaffian function is in turn defined with respect to a Pfaffian chain $\vec{q}$ of length $r$, for any $D \ge 1$, we prove the existence of a polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree at most $D$ such that each connected component of $\mathbb{R}^n \setminus Z(P)$ intersects at most $\sim \frac{|\Gamma|}{D^{n - k - r}}$ elements of $\Gamma$. Also, under some mild conditions on $\vec{q}$, for any $D \ge 1$, we prove the existence of a Pfaffian function $P'$ of degree at most $D$ defined with respect to $\vec{q}$, such that each connected component of $\mathbb{R}^n \setminus Z(P')$ intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of $\Gamma$. To do so, given a $k$-dimensional semi-Pfaffian set $\gamma \subseteq \mathbb{R}^n$, and a polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree at most $D$, we establish a uniform bound on the number of connected components of $\mathbb{R}^n \setminus Z(P)$ that $\gamma$ intersects; that is, we prove that the number of connected components of $(\mathbb{R}^n \setminus Z(P)) \cap \gamma$ is at most $\sim D^{k+r}$. Finally, as applications, we derive Pfaffian versions of Szemeredi-Trotter-type theorems and also prove bounds on the number of joints between Pfaffian curves.

These results, together with some of my other recent work (e.g., bounding the number of distinct distances on plane Pfaffian curves), are steps in a larger program - pushing discrete geometry into settings where the underlying sets need not be algebraic. I will also discuss this broader viewpoint in the talk.

This talk is based on multiple joint works with Saugata Basu, Antonio Lerario, Martin Lotz, Adam Sheffer, and Nicolai Vorobjov.

[1] Larry Guth, Polynomial partitioning for a set of varieties, Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 159, Cambridge University Press, 2015, pp. 459–469.

[2] Larry Guth and Nets Hawk Katz, On the Erdős distinct distances problem in the plane, Annals of
mathematics (2015), 155–190.
 

Thu, 22 Jan 2026
11:00
C1

$(\mathbb{C};+,\cdot,CM)$

Martin Bays
(Oxford University)
Abstract

In this ``journal club''-style advanced class, I will present some material from a recent paper of Tom Scanlon https://arxiv.org/abs/2508.17485 . Motivated by the question of decidability of the field C(t) of complex rational functions in one variable, he considers the structure $(\mathbb{C};+,\cdot,CM)$ of the complex field expanded by a predicate for the set CM of j-invariants of elliptic curves with complex multiplication (the "special points"). Analogous to Zilber's result from the 90s on stability of the expansion by a predicate for the roots of unity, Scanlon shows that Pila's solution to the André-Oort conjecture implies that this structure is stable, and moreover that effectivity in this conjecture due to Binyamini implies decidability. I aim to explain Scanlon's proof of this result in some detail.
 

Needles in a haystack: using forensic network science to uncover insider trading
Jaeger, G Yeung, W Lambiotte, R (21 Dec 2025)
Subscribe to