16:00
New Lower Bounds For Cap Sets
Abstract
A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.
A (quasi)-polynomial Bogolyubov theorem for finite simple groups
Abstract
We show that there exists $C>1$, such that if $A$ is a subset of a non-alternating finite simple group $G$ of density $|A|/|G|= \alpha$, then $AA^{-1}AA^{-1}$ contains a subgroup of density at least $\alpha^{C}$. We will also give a corresponding (slightly weaker) statement for alternating groups.
To prove our results we introduce new hypercontractive inequalities for simple groups. These allow us to show that the (non-abelian) Fourier spectrum of indicators of 'global' sets are concentrated on the high-dimensional irreducible representations. Here globalness is a pseudorandomness notion reminiscent of the notion of spreadness.
The talk is based on joint works with David Ellis, Shai Evra, Guy Kindler, Nathan Lindzey, and Peter Keevash, and Dor Minzer. No prior knowledge of representation theory will be assumed.
Geometrisation of the Langlands correspondence
Abstract
I'll give an introduction to a recent theme in the Langlands program over number fields and mixed characteristic local fields (with a much older history over function fields). This is enhancing the traditional 'set-theoretic' Langlands correspondence into something with a more geometric flavour. For example, relating (categories of) representations of p-adic groups to sheaves on moduli spaces of Galois representations. No number theory or 'Langlands' background will be assumed!
Morse Theory for Group Presentations and Applications
Abstract
Discrete Morse theory serves as a combinatorial tool for simplifying the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will introduce a refinement of this theory that not only ensures homotopy equivalence with the simplified CW-complex but also guarantees a Whitehead simple homotopy equivalence. Furthermore, it offers an explicit description of the construction of the simplified Morse complex and provides bounds on the dimension of the complexes involved in the Whitehead deformation.
This refined approach establishes a suitable theoretical framework for addressing various problems in combinatorial group theory and topological data analysis. I will show applications of this technique to the Andrews-Curtis conjecture and computational methods for inferring the fundamental group of point clouds.
This talk is based on the article: Fernandez, X. Morse theory for group presentations. Trans. Amer. Math. Soc. 377 (2024), 2495-2523.