On blowup for wave maps with additive noise
Abstract
We study a prototypical geometric wave equation, given by wave maps from the Minkowski space R 1+d into the sphere S d , under the influence of additive stochastic forcing, in all energy-supercritical dimensions d ≥ 3. In the deterministic setting, self-similar finite-time blowup is expected for large data, but remains open beyond perturbative regimes. We show that adding a non-degenerate Gaussian noise provokes finite-time blowup with positive probability for arbitrary initial data. Moreover, the blowup is governed by the explicit self-similar profile originally identified in the deterministic theory. Our approach combines local well-posedness for stochastic wave equations, a Da Prato-Debussche decomposition, and a stability analysis in self-similar variables. The result corroborates the conjecture that the self-similar blowup mechanism is robust and represents the generic large-data behavior in the deterministic problem.
This is joint work with M. Hofmanova and E. Luongo (Bielefeld)
Extending the Reshetikhin-Turaev TQFT
Abstract
A d-dimensional TQFT is a topological invariant which assigns (d-1)-dimensional manifolds to vector spaces and d-dimensional cobordisms to linear maps. In the early 90s, Reshetikhin and Turaev constructed examples of these in the case d=3, using the data of certain types of linear categories. In this talk, I will provide an overview of this construction, and then explore how this might be meaningfully extended downwards to assign 1-manifolds to "2-vector spaces". Minimal knowledge of category theory assumed!