Predicting phenotype transition probabilities via conditional algorithmic probability approximations
Dingle, K Novev, J Ahnert, S Louis, A Journal of the Royal Society: Interface volume 19 issue 197 (14 Dec 2022)
Contact-number-driven virus evolution: a multi-level modeling framework for the evolution of acute or persistent RNA virus infection
Sunagawa, J Komorizono, R Hart, W Thompson, R Makino, A Tomonaga, K Iwami, S Yamaguchi, R (01 Jan 2022)
Squarefrees are Gaussian in short intervals
Gorodetsky, O Mangerel, A Rodgers, B Journal fuer die Reine und Angewandte Mathematik: Crelle's journal volume 2023 issue 795 1-44 (2023)
Concentration-dependent domain evolution in reaction–diffusion systems
Krause, A Gaffney, E Walker, B Bulletin of Mathematical Biology volume 85 (13 Jan 2023)
The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence
Ranson, J Al Khleifat, A Lyall, D Newby, D Winchester, L Proitsi, P Veldsman, M Rittman, T Marzi, S Yao, Z Skene, N Bettencourt, C Kormilitzin, A Foote, I Golborne, C Lourida, I Bucholc, M Tang, E Oxtoby, N Bagshaw, P Walker, Z Everson, R Ballard, C van Duijn, C Langa, K MacLeod, M Rockwood, K Llewellyn, D Alzheimer's & Dementia volume 18 issue S2 (20 Dec 2022)
Discrimination of muons for mass composition studies of inclined air showers detected with IceTop
Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Alves, A Amin, N An, R Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal, A Barbano, A Barwick, S Bastian, B Basu, V Baur, S Bay, R Beatty, J Becker, K Becker Tjus, J Bellenghi, C BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, R Busse, R Campana, M Carnie-Bronca, E Chen, C Chirkin, D Choi, K Clark, B Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dappen, C Dave, P De Clercq, C DeLaunay, J Dembinski, H Deoskar, K De Ridder, S Desai, A Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Dharani, S Diaz, A Díaz-Vélez, J Dittmer, M Dujmovic, H Dunkman, M DuVernois, M Dvorak, E Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, P Fan, K Fazely, A Fiedlschuster, S Fienberg, A Filimonov, K Finley, C Fischer, L Proceedings of Science volume 395 (18 Mar 2022)
Lorentz Meets Lipschitz
Lange, C Lytchak, A Sämann, C Advances in Theoretical and Mathematical Physics volume 25 issue 8 2141-2170 (2021)
Random walk based conditional generative model for temporal networks with attributes
Limnios, S Elliott, A Cucuringu, M Reinert, G Advances in Neural Information Processing Systems 36 (NeurIPS 2022) (03 Oct 2022)
DAMNETS: a deep autoregressive model for generating Markovian network time series
Clarkson, J Cucuringu, M Elliott, A Reinert, G Proceedings of the First Learning on Graphs Conference 23:1-23:19 (12 Dec 2022)
Tue, 21 Feb 2023

14:30 - 15:00
Lecture Room 3

Generalising Quasi-Newton Updates to Higher Orders

Karl Welzel
Abstract

At the heart of all quasi-Newton methods is an update rule that enables us to gradually improve the Hessian approximation using the already available gradient evaluations. Theoretical results show that the global performance of optimization algorithms can be improved with higher-order derivatives. This motivates an investigation of generalizations of quasi-Newton update rules to obtain for example third derivatives (which are tensors) from Hessian evaluations. Our generalization is based on the observation that quasi-Newton updates are least-change updates satisfying the secant equation, with different methods using different norms to measure the size of the change. We present a full characterization for least-change updates in weighted Frobenius norms (satisfying an analogue of the secant equation) for derivatives of arbitrary order. Moreover, we establish convergence of the approximations to the true derivative under standard assumptions and explore the quality of the generated approximations in numerical experiments.

Subscribe to