10:00
Functors between Category O and finite dimension modules of the degenerate affine Hecke algebra
14:15
Contracting (-1) curves on noncommutative surfaces
Abstract
We give a noncommutative analogue of Castelnuovo's classic theorem that (-1) lines on a smooth surface can be contracted, and show how this may be used to construct an explicit birational map between a noncommutative P^2 and a noncommutative quadric surface. This has applications to the classification of noncommutative projective surfaces, one of the major open problems in noncommutative algebraic geometry. We will not assume a background in noncommutative ring theory. The talk is based on joint work with Rogalski and Staffor
Mixed Hodge structures of parabolic character varieties via geometric methods
14:30
Cross-diffusion systems for image enhancement and denoising
Abstract
Diffusion processes are commonly used in image processing. In particular, complex diffusion models have been successfully applied in medical imaging denoising. The interpretation of a complex diffusion equation as a cross-diffusion system motivates the introduction of more general models of this type and their study in the context of image processing. In this talk we will discuss the use of nonlinear cross-diffusion systems to perform image restoration. We will analyse the well-posedness, scale-space properties and
long time behaviour of the models along with their performance to treat image filtering problems. Examples of application will be highlighted.
14:30
Low-rank compression of functions in 2D and 3D
Abstract
Low-rank compression of matrices and tensors is a huge and growing business. Closely related is low-rank compression of multivariate functions, a technique used in Chebfun2 and Chebfun3. Not all functions can be compressed, so the question becomes, which ones? Here we focus on two kinds of functions for which compression is effective: those with some alignment with the coordinate axes, and those dominated by small regions of localized complexity.
14:30
Limits of Some Combinatorial Problems
Abstract
We purify and generalize some techniques which were successful in the limit theory of graphs and other discrete structures. We demonstrate how this technique can be used for solving different combinatorial problems, by defining the limit problems of the Manickam--Miklós--Singhi Conjecture, the Kikuta–Ruckle Conjecture and Alpern's Caching Game.
14:30
The Sharp Threshold for Making Squares
Abstract
Many of the fastest known algorithms for factoring large integers rely on finding subsequences of randomly generated sequences of integers whose product is a perfect square. Motivated by this, in 1994 Pomerance posed the problem of determining the threshold of the event that a random sequence of N integers, each chosen uniformly from the set
{1,...,x}, contains a subsequence, the product of whose elements is a perfect square. In 1996, Pomerance gave good bounds on this threshold and also conjectured that it is sharp.
In a paper published in Annals of Mathematics in 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds, and stated a conjecture as to the location of this sharp threshold. In recent work, we have confirmed this conjecture. In my talk, I shall give a brief overview of some of the ideas used in the proof, which relies on techniques from number theory, combinatorics and stochastic processes. Joint work with Béla Bollobás and Robert Morris.
14:30
A Switching Approach to Random Graphs with a Fixed Degree Sequence
Abstract
For a fixed degree sequence D=(d_1,...,d_n), let G(D) be a uniformly chosen (simple) graph on {1,...,n} where the vertex i has degree d_i. The study of G(D) is of special interest in order to model real-world networks that can be described by their degree sequence, such as scale-free networks. While many aspects of G(D) have been extensively studied, most of the obtained results only hold provided that the degree sequence D satisfies some technical conditions. In this talk we will introduce a new approach (based on the switching method) that allows us to study the random graph G(D) imposing no conditions on D. Most notably, this approach provides a new criterion on the existence of a giant component in G(D). Moreover, this method is also useful to determine whether there exists a percolation threshold in G(D). The first part of this talk is joint work with F. Joos, D. Rautenbach and B. Reed, and the second part, with N. Fountoulakis and F. Joos.