Mon, 04 May 2020

16:00 - 17:00

TBA

Mon, 18 May 2020
12:45
Virtual

Compensating strong coupling with large charge -- ZOOM SEMINAR

Susanne Reffert
(Bern)
Abstract

Over the last few years, it has become clear that working in sectors of large global charge leads to significant simplifications when studying strongly coupled CFTs. It allows us in particular to calculate the CFT data as an expansion in inverse powers of the large charge.
In this talk, I will introduce the large-charge expansion via the simple example of the O(2) model and will then apply it to a number of other systems which display a richer structure, such as non-Abelian global symmetry groups.
 

Tue, 16 Jun 2020

15:30 - 16:30

Statistical behavior of the Riemann zeta function and multiplicative chaos

Christian Webb
(Aalto University)
Abstract

I will discuss joint work with Eero Saksman (Helsinki) describing the statistical behavior of the Riemann zeta function on the critical line in terms of complex Gaussian multiplicative chaos. Time permitting, I will also discuss connections to random matrix theory as well as some recent joint work with Saksman and Adam Harper (Warwick) relating powers of the absolute value of the zeta function to real multiplicative chaos.

Tue, 09 Jun 2020

15:30 - 16:30

Characteristic polynomials of non-Hermitian matrices, duality, and Painlevé transcendents

Nick Simm
(University of Sussex)
Abstract

We study expectations of powers and correlations for characteristic polynomials of N x N non-Hermitian random matrices. This problem is related to the analysis of planar models (log-gases) where a Gaussian (or other) background measure is perturbed by a finite number of point charges in the plane. I will discuss the critical asymptotics, for example when a point charge collides with the boundary of the support, or when two point charges collide with each other (coalesce) in the bulk. In many of these situations, we are able to express the results in terms of Painlevé transcendents. The application to certain d-fold rotationally invariant models will be discussed. This is joint work with Alfredo Deaño (University of Kent).

Tue, 02 Jun 2020

15:30 - 16:30

The Fyodorov-Hiary-Keating conjecture

Paul Bourgade
(New York University)
Abstract

Fyodorov-Hiary-Keating established a series of conjectures concerning the large values of the Riemann zeta function in a random short interval. After reviewing the origins of these predictions through the random matrix analogy, I will explain recent work with Louis-Pierre Arguin and Maksym Radziwill, which proves a strong form of the upper bound for the maximum.

Tue, 12 May 2020

15:30 - 16:30

Interacting particle systems and random walks on Hecke algebras

Alexey Bufetov
(Hausdorff Center for Mathematics)
Abstract

In the last thirty years there was a lot of progress in understanding the asymmetric simple exclusion process (ASEP). Much less is currently known about the multi-species extension of ASEP. In the talk I will discuss the connection of such an extension to random walks on Hecke algebras and its probabilistic applications. 

Subscribe to