Fri, 13 Mar 2015

14:15 - 15:15
C1

Ice stream dynamics: a free boundary problem

Christian Schoof
(University of British Columbia)
Abstract

Ice streams are narrow bands of rapidly sliding ice within an otherwise

slowly flowing continental ice sheet. Unlike the rest of the ice sheet,

which flows as a typical viscous gravity current, ice streams experience

weak friction at their base and behave more like viscous 'free films' or

membranes. The reason for the weak friction is the presence of liquid

water at high pressure at the base of the ice; the water is in turn

generated as a result of dissipation of heat by the flow of the ice

stream. I will explain briefly how this positive feedback can explain the

observed (or inferred, as the time scales are rather long) oscillatory

behaviour of ice streams as a relaxation oscillation. A key parameter in

simple models for such ice stream 'surges' is the width of an ice stream.

Relatively little is understood about what controls how the width of an

ice stream evolves in time. I will focus on this problem for most of the

talk, showing how intense heat dissipation in the margins of an ice stream

combined with large heat fluxes associated with a switch in thermal

boundary conditions may control the rate at which the margin of an ice

stream migrates. The relevant mathematics involves a somewhat non-standard

contact problem, in which a scalar parameter must be chosen to control the

location of the contact region. I will demonstrate how the problem can be

solved using the Wiener-Hopf method, and show recent extensions of this

work to more realistic physics using a finite element discretization.

Fri, 13 Feb 2015
14:15
C1

Numerical methods in seismic imaging

Paul Childs
((ex) Schlumberger Gould Research)
Abstract

A form of PDE-constrained inversion is today used as an engineering tool for seismic imaging. Today there are some successful studies and good workflows are available. However, mathematicians will find some important unanswered questions: (1) robustness of inversion with highly nonconvex objective functions; (2) scalable solution highly oscillatory problem; and (3) handling of uncertainties. We shall briefly illustrate these challenges, and mention some possible solutions.

Fri, 30 Jan 2015

14:15 - 15:15
C1

Semi-Bayesian methods under ice

Martin O'Leary
(Swansea University)
Abstract

One of the main obstacles to forecasting sea level rise over the coming centuries is the problem of predicting changes in the flow of ice sheets, and in particular their fast-flowing outlet glaciers. While numerical models of ice sheet flow exist, they are often hampered by a lack of input data, particularly concerning the bedrock topography beneath the ice. Measurements of this topography are relatively scarce, expensive to obtain, and often error-prone. In contrast, observations of surface elevations and velocities are widespread and accurate.

In an ideal world, we could combine surface observations with our understanding of ice flow to invert for the bed topography. However, this problem is ill-posed, and solutions are both unstable and non-unique. Conventionally, this problem is circumvented by the use of regularization terms in the inversion, but these are often arbitrary and the numerical methods are still somewhat unstable.

One philosophically appealing option is to apply a fully Bayesian framework to the problem. Although some success has been had in this area, the resulting distributions are extremely difficult to work with, both from an interpretive standpoint and a numerical one. In particular, certain forms of prior information, such as constraints on the bedrock slope and roughness, are extremely difficult to represent in this framework.

A more profitable avenue for exploration is a semi-Bayesian approach, whereby a classical inverse method is regularized using terms derived from a Bayesian model of the problem. This allows for the inclusion of quite sophisticated forms of prior information, while retaining the tractability of the classical inverse problem. In particular, we can account for the severely non-Gaussian error distribution of many of our measurements, which was previously impossible.

Mon, 09 Mar 2015

15:45 - 16:45
Oxford-Man Institute

Transience of the vacant set for near-critical random interlacements in high dimensions

Cancelled
Abstract

The model of random interlacements is a one-parameter family of random subsets of $\Z^d$, which locally describes the trace of a simple random walk on a $d$-dimensional torus running up to time $u$ times its volume. Here, $u$ serves as an intensity parameter.

Its complement, the so-called vacant set, has been show to undergo a non-trivial percolation phase transition in $u$, i.e., there is $u_*(d)\in (0,\infty)$ such that for all $u<u_*(d)$ the vacant set has a unique infinite connected component (supercritical phase), while for $u>u_*(d)$ all connected components are finite.

So far all results regarding geometric properties of this infinite connected component have been proven under the assumption that $u$ is close to zero. 

I will discuss a recent result, which states that throughout most of the supercritical phase simple random walk on the infinite connected component is transient, provided that the dimension is high enough.

This is joint work with Alexander Drewitz

Mon, 09 Mar 2015

14:15 - 15:15
Oxford-Man Institute

Statistical Inference on L\'evy measures from discrete observations

Cancelled
Abstract

Abstract: L\'evy processes are increasingly popular for modelling stochastic process data with jump behaviour. In practice statisticians only observe discretely sampled increments of the process, leading to a statistical inverse problem. To understand the jump behaviour of the process one needs to make inference on the infinite-dimensional parameter given by the L\'evy measure. We discuss recent developments in the analysis of this problem, including in particular functional limit theorems for commonly used estimators of the generalised distribution function of the L\'evy measure, and their application to statistical uncertainty quantification methodology (confidence bands and tests). 

Mon, 02 Mar 2015

15:45 - 16:45
Oxford-Man Institute

Minimising the commute time.

Saul Jacka
(Warwick University)
Abstract

We consider the problem of minimising the commute or shuttle time for a diffusion between the endpoints of an interval. The control is the scale function for the diffusion. We show that the dynamic version of the problem has the same solution as the static version if we start at an end point and consider the much harder case where the starting point is in the interior.

 

Thu, 26 Feb 2015

17:30 - 18:30
L6

The existential theory of equicharacteristic henselian valued fields

William Anscombe
(Leeds)
Abstract

We present some recent work - joint with Arno Fehm - in which we give an `existential Ax-Kochen-Ershov principle' for equicharacteristic henselian valued fields. More precisely, we show that the existential theory of such a valued field depends only on the existential theory of the residue field. In residue characteristic zero, this result is well-known and follows from the classical Ax-Kochen-Ershov Theorems. In arbitrary (but equal) characteristic, our proof uses F-V Kuhlmann's theory of tame fields. One corollary is an unconditional proof that the existential theory of F_q((t)) is decidable. We will explain how this relates to the earlier conditional proof of this result, due to Denef and Schoutens.
 

Mon, 02 Mar 2015

14:15 - 15:15
Oxford-Man Institute

tba

Michael Kozdron
(University of Regina)
Abstract

tba

Mon, 16 Feb 2015

15:45 - 16:45
Oxford-Man Institute

tba

Dmitry Chellak
Abstract

tba

Thu, 19 Feb 2015

17:30 - 18:30
L6

Hardy type derivations on the surreal numbers

Alessandro Berarducci
(Universita di Pisa)
Abstract

The field of transseries was introduced by Ecalle to give a solution to Dulac's problem, a weakening of Hilbert's 16th problem. They form an elementary extension of the real exponential field and have received the attention of model theorists. Another such elementary extension is given by Conway's surreal numbers, and various connections with the transseries have been conjectured, among which the possibility of introducing a Hardy type derivation on the surreal numbers. I will present a complete solution to these conjectures obtained in collaboration with Vincenzo Mantova.
 

Subscribe to