Tue, 18 Nov 2014

17:00 - 18:00
C2

Commuting probabilities of finite groups

Sean Eberhard
(Oxford)
Abstract

The commuting probability of a finite group is defined to be the probability that two randomly chosen group elements commute. Not all rationals between 0 and 1 occur as commuting probabilities. In fact Keith Joseph conjectured in 1977 that all limit points of the set of commuting probabilities are rational, and moreover that these limit points can only be approached from above. In this talk we'll discuss a structure theorem for commuting probabilities which roughly asserts that commuting probabilities are nearly Egyptian fractions of bounded complexity. Joseph's conjectures are corollaries.

Below are listed upcoming public lectures and events at the Mathematical Institute. Click through into this section for a more detailed listing of all such events and also links to some public lectures online.
Thu, 13 Nov 2014

16:00 - 17:00
C2

Non-commutative topology and K-theory for applications to topological insulators

Guo Chuan Thiang
(Oxford University)
Abstract

I will recall basic notions of operator K-theory as a non-commutative (C*-algebra) generalisation of topological K-theory. Twisted crossed products will be introduced as generalisations of group C*-algebras, and a model of Karoubi's K-theory, which makes sense for super-algebras, will be sketched. The motivation comes from physics, through the study of quantum mechanical symmetries, charged free quantum fields, and topological insulators. The relevant theorems, which are interesting in their own right but scattered in the literature, will be consolidated.

Thu, 30 Oct 2014
11:00
C5

"Decidability in extensions of F_p((t))";

Ben Rigler
(Oxford)
Abstract

"We consider certain distinguished extensions of the field F_p((t)) of formal Laurent series over F_p, and look at questions about their model theory and Galois theory, with a particular focus on decidability."

Mon, 10 Nov 2014
17:00
L2

Non-Newtonian Flows: The mathematics of surfactant mixtures

Pam Cook
(University of Delaware)
Abstract

In highly concentrated surfactant solutions the surfactant molecules self-assemble into long flexible "wormy" structures. Properties of these wormlike micellar solutions make them ideal for use in oil recovery and in body care products (shampoo). These properties depend strongly on temperature and concentration conditions.   In solution the "worms" entangle, forming a network, but also continuously break and reform, thus earning the name ‘living polymers’. In flow these fluids exhibit spatial inhomogeneities,  shear-banding, and dynamic elastic recoil. In this talk a rheological equation of state that is capable of describing these fluids is described   The resultant governing  macroscale equations consist of a coupled nonlinear partial differential equation system.  Model predictions are presented, contrasted with experimental results, and contrasted with predictions of other existing models.  Generalizations of the model to allow the capturing of  behaviors under changing concentration or temperature conditions, namely power law and stretched exponential relaxation as opposed to exponential relaxation, will be discussed and  particularly a mesoscale stochastic simulation network model will be presented.  

Subscribe to