Fast evaluation of the inverse Poisson CDF
Abstract
One general approach to random number generation is to take a uniformly distributed (0,1) random variable and then invert the cumulative distribution function (CDF) to generate samples from another distribution. This talk follows this approach, approximating the inverse CDF for the Poisson distribution in a way which is particularly efficient for vector execution on NVIDIA GPUs.
Transversal slices to conjugacy classes in algebraic groups and Lustig's partition.
Abstract
I shall show that for every conjugacy class O in a connected semisimple algebraic group G over an algebraically closed field of characteristic good for G one can find a special transversal slice S to the set of conjugacy classes in G such that O intersects S and dim O=codim S. The construction of the slice utilizes some new combinatorics related to invariant planes for the action of Weyl group elements in the reflection representation. The condition dim O=codim S is checked using some new mysterious results by Lusztig on intersection of conjugacy classes in algebraic groups with Bruhat cells.
Orbifolds and the 84(g-1) Theorem
Abstract
In 1983 Kerckhoff settled a long standing conjecture by Nielsen proving that every finite subgroup of the mapping class group of a compact surface can be realized as a group of diffeomorphisms. An important consequence of this theorem is that one can now try to study subgroups of the mapping class group taking the quotient of the surface by these groups of diffeomorphisms. In this talk we will study quotients of surfaces under the action of a finite group to find bounds on the cardinality of such a group.