11:00
Logic in practise
Abstract
In this talk we will introduce quantifier elimination and give various examples of theories with this property. We will see some very useful applications of quantifier elimination to algebra and geometry that will hopefully convince you how practical this property is to other areas of mathematics.
15:30
Pure spinor description of maximally supersymmetric gauge theories
Abstract
Using non-minimal pure spinor superspace, Cederwall has constructed BRST-invariant actions for D=10 super-Born-Infeld and D=11 supergravity which are quartic in the superfields. But since the superfields have explicit dependence on the non-minimal pure spinor variables, it is non-trivial to show these actions correctly describe super-Born-Infeld and supergravity. In this talk, I will expand solutions to the equations of motion from the pure spinor action for D=10 abelian super Born-Infeld to leading order around the linearized solutions and show that they correctly describe the interactions expected. If I have time, I will explain how to generalize these ideas to D=11 supergravity.
14:30
Intersection sizes of linear subspaces with the hypercube
Abstract
We continue the study by Melo and Winter [arXiv:1712.01763, 2017] on the possible intersection sizes of a $k$-dimensional subspace with the vertices of the $n$-dimensional hypercube in Euclidean space. Melo and Winter conjectured that all intersection sizes larger than $2^{k-1}$ (the “large” sizes) are of the form $2^{k-1} + 2^i$. We show that this is almost true: the large intersection sizes are either of this form or of the form $35\cdot2^{k-6}$ . We also disprove a second conjecture of Melo and Winter by proving that a positive fraction of the “small” values is missing.
14:30
Perfect matchings in random subgraphs of regular bipartite graphs
Abstract
The classical theory of Erdős–Rényi random graphs is concerned primarily with random subgraphs of $K_n$ or $K_{n,n}$. Lately, there has been much interest in understanding random subgraphs of other graph families, such as regular graphs.
We study the following problem: Let $G$ be a $k$-regular bipartite graph with $2n$ vertices. Consider the random process where, beginning with $2n$ isolated vertices, $G$ is reconstructed by adding its edges one by one in a uniformly random order. An early result in the theory of random graphs states that if $G=K_{n,n}$, then with high probability a perfect matching appears at the same moment that the last isolated vertex disappears. We show that if $k = Ω(n)$, then this holds for any $k$-regular bipartite graph $G$. This improves on a result of Goel, Kapralov, and Khanna, who showed that with high probability a perfect matching appears after $O(n \log(n))$ edges have been added to the graph. On the other hand, if $k = o(n / (\log(n) \log (\log(n)))$, we construct a family of $k$-regular bipartite graphs in which isolated vertices disappear long before the appearance of perfect matchings.
Joint work with Roman Glebov and Zur Luria.
14:30
Long monotone paths in edge-ordered graphs
Abstract
How long a monotone path can one always find in any edge-ordering of the complete graph $K_n$? This appealing question was first asked by Chvatal and Komlos in 1971, and has since attracted the attention of many researchers, inspiring a variety of related problems. The prevailing conjecture is that one can always find a monotone path of linear length, but until now the best known lower bound was $n^{2/3−o(1)}$, which was proved by Milans. This talk will be
about nearly closing this gap, proving that any edge-ordering of the complete graph contains a monotone path of length $n^{1−o(1)}$. This is joint work with Bucic, Kwan, Sudakov, Tran, and Wagner.
15:45
Random triangular Burnside groups
Abstract
In this talk I will discuss recent joint work with Dominik Gruber where
we find a reasonable model for random (infinite) Burnside groups,
building on earlier tools developed by Coulon and Coulon-Gruber.
The free Burnside group with rank r and exponent n is defined to be the
quotient of a free group of rank r by the normal subgroup generated by
all elements of the form g^n; quotients of such groups are called
Burnside groups. In 1902, Burnside asked whether any such groups could
be infinite, but it wasn't until the 1960s that Novikov and Adian showed
that indeed this was the case for all large enough odd n, with later
important developments by Ol'shanski, Ivanov, Lysenok and others.
In a different direction, when Gromov developed the theory of hyperbolic
groups in the 1980s and 90s, he observed that random quotients of free
groups have interesting properties: depending on exactly how one chooses
the number and length of relations one can typically gets hyperbolic
groups, and these groups are infinite as long as not too many relations
are chosen, and exhibit other interesting behaviour. But one could
equally well consider what happens if one takes random quotients of
other free objects, such as free Burnside groups, and that is what we
will discuss.
Oxford Mathematician Andreas Bode talks about his work in representation theory and its lesson for the interconnectness of mathematics.
15:45
From PDEs to groups
Abstract
We present a construction which associates to a KdV equation the lamplighter group.
In order to establish this relation we use automata and random walks on ultra discrete limits.
It is also related to the L2 Betti numbers introduced by Atiyah which are homotopy
invariants of closed manifolds.