Fri, 22 Nov 2024
12:00
L2

C for Carroll

Saikat Mondal
(Kanpur)
Abstract

Physics beyond relativistic invariance and without Lorentz (or Poincaré) symmetry and the geometry underlying these non-Lorentzian structures have become very fashionable of late. This is primarily due to the discovery of uses of non-Lorentzian structures in various branches of physics, including condensed matter physics, classical and quantum gravity, fluid dynamics, cosmology, etc. In this talk, I will be talking about one such theory - Carrollian theory, where the Carroll group replaces the Poincare group as the symmetry group of interest. Interestingly, any null hypersurface is a Carroll manifold and the Killing vectors on the null manifold generate Carroll algebra. Historically, Carroll group was first obtained from the Poincaré group via a contraction by taking the speed of light going to zero limit as a “degenerate cousin of the Poincaré group”.  I will shed some light on Carrollian fermions, i.e. fermions defined on generic null surfaces. Due to the degenerate nature of the Carroll manifold, there exist two distinct Carroll Clifford algebras and, correspondingly, two different Carroll fermionic theories. I will discuss them in detail. Then, I will show some examples; when the dispersion relation becomes trivial, i.e. energy bands flatten out, there can be a possibility of the emergence of Carroll symmetry. 

Fri, 08 Nov 2024
12:00
L6

Carroll approach to flat space holography in 3d

Daniel Grumiller
(TU Vienna)
Abstract

Introduction to flat space holography in three dimensions and Carrollian CFT2, with selected results on correlation functions, thermal entropy, entanglement entropy and an outlook to Bondi news in 3d.

On the non-perturbative bulk Hilbert space of JT gravity
Iliesiu, L Levine, A Lin, H Maxfield, H Mezei, M Journal of High Energy Physics volume 2024 issue 10 (29 Oct 2024)
Fri, 08 Nov 2024
15:00
L5

Topological Analysis of Bone Microstructure, Directed Persistent Homology and the Persistent Laplacian for Data Science

Ruben Sanchez-Garcia
(University of Southampton)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

In this talk, I will give an overview of recent joint work on Topological Data Analysis (TDA). The first one is an application of TDA to quantify porosity in pathological bone tissue. The second is an extension of persistent homology to directed simplicial complexes. Lastly, we present an evaluation of the persistent Laplacian in machine learning tasks. This is joint work with Ysanne Pritchard, Aikta Sharma, Claire Clarkin, Helen Ogden, and Sumeet Mahajan; David Mendez; and Tom Davies and Zhengchao Wang, respectively.
 

Ikeda-Watanabe's connection, Brownian motion and Navier-Stokes equation on Riemannian manifolds
Qian, Z Osaka Journal of Mathematics
Stable isoperimetric ratios and the Hodge Laplacian of hyperbolic manifolds
Rudd, C Journal of Topology volume 16 issue 2 588-633 (05 Jun 2023)
Computing a Link Diagram From Its Exterior.
Dunfield, N Obeidin, M Rudd, C Discrete & computational geometry volume 71 issue 1 121-159 (02 Jan 2024)
Subscribe to