15:00
Basic aspects of n-homological algebra
Abstract
Abstract: n-homological algebra was initiated by Iyama
via his notion of n-cluster tilting subcategories.
It was turned into an abstract theory by the definition
of n-abelian categories (Jasso) and (n+2)-angulated categories
(Geiss-Keller-Oppermann).
The talk explains some elementary aspects of these notions.
We also consider the special case of an n-representation finite algebra.
Such an algebra gives rise to an n-abelian
category which can be "derived" to an (n+2)-angulated category.
This case is particularly nice because it is
analogous to the classic relationship between
the module category and the derived category of a
hereditary algebra of finite representation type.
15:45
The Curved Cartan Complex
Abstract
The Cartan model computes the equivariant cohomology of a smooth manifold X with
differentiable action of a compact Lie group G, from the invariant functions on
the Lie algebra with values in differential forms and a deformation of the de Rham
differential. Before extracting invariants, the Cartan differential does not square
to zero. Unrecognised was the fact that the full complex is a curved algebra,
computing the quotient by G of the algebra of differential forms on X. This
generates, for example, a gauged version of string topology. Another instance of
the construction, applied to deformation quantisation of symplectic manifolds,
gives the BRST construction of the symplectic quotient. Finally, the theory for a
X point with an additional quadratic curving computes the representation category
of the compact group G.
Elliptic polylogarithms and string amplitudes
Abstract
Recent results showed that the low energy expansion of closed superstring amplitudes can be expressed in terms of single-valued multiple elliptic polylogarithms. I will explain how these functions may be defined as iterated integrals on the torus and sketch how they arise from Feynman integrals.
Bieberbach's Theorems
Abstract
14:30
Ramsey Classes and Beyond
Abstract
Ramsey classes may be viewed as the top of the line of Ramsey properties. Classical and not so classical examples of Ramsey classes of finite structures were recently extended by many new examples which make the characterisation of Ramsey classes realistic (and in many cases known). Particularly I will cover recent joint work with J. Hubicka.