Recent progress in Ambitwistor strings
Abstract
New ambitwistor string models are presented for a variety of theories and older models are shown to work at 1 loop and perhaps higher using a simpler formulation on the Riemann sphere.
New ambitwistor string models are presented for a variety of theories and older models are shown to work at 1 loop and perhaps higher using a simpler formulation on the Riemann sphere.
Many people talk about properties that you would expect of a group. When they say this they are considering random groups, I will define what it means to pick a random group in one of many models and will give some properties that these groups will have with overwhelming probability. I will look at the proof of some of these results although the talk will mainly avoid proving things rigorously.
Following an idea of Bridgeland, we study the operator on the K-group of algebraic stacks, which takes a stack to its inertia stack. We prove that the inertia operator is diagonalizable when restricted to nice enough stacks, including those with algebra stabilizers. We use these results to prove a structure theorem for the motivic Hall algebra of a projective variety, and give a more conceptual definition of virtually indecomposable stack function. This is joint work with Pooya Ronagh.
Let $G$ be a compact Lie group and $k$ be a field of characteristic $p\ge 0$ such that $H^*(G)$ does not have $p$-torsion. We show that a free Lagrangian orbit of a Hamiltonian $G$-action on a compact, monotone, symplectic manifold $X$ split-generates an idempotent summand of the monotone Fukaya category over $k$ if and only if it represents a non-zero object of that summand. Our result is based on: an explicit understanding of the wrapped Fukaya category through Koszul twisted complexes involving the zero-section and a cotangent fibre; and a functor canonically associated to the Hamiltonian $G$-action on $X$. Several examples can be studied in a uniform manner including toric Fano varieties and certain Grassmannians.
Calabi-Yau manifolds without flux are perhaps the best-known
supergravity backgrounds that leave some supersymmetry unbroken. The
supersymmetry conditions on such spaces can be rephrased as the
existence and integrability of a particular geometric structure. When
fluxes are allowed, the conditions are more complicated and the
analogue of the geometric structure is not well understood.
In this talk, I will define the analogue of Calabi-Yau geometry for
generic D=4, N=2 backgrounds with flux in both type II and
eleven-dimensional supergravity. The geometry is characterised by a
pair of G-structures in 'exceptional generalised geometry' that
interpolate between complex, symplectic and hyper-Kahler geometry.
Supersymmetry is then equivalent to integrability of the structures,
which appears as moment maps for diffeomorphisms and gauge
transformations. Similar structures also appear in D=5 and D=6
backgrounds with eight supercharges.
As a simple application, I will discuss the case of AdS5 backgrounds
in type IIB, where deformations of these geometric structures give
exactly marginal deformations of the dual field theories.
I will explain how to relate the center of a cyclotomic quiver Hecke algebras to the cohomology of Nakajima quiver varieties using a current algebra action. This is a joint work with M. Varagnolo and E. Vasserot.
In 1964 Golod and Shafarevich discovered a powerful tool that gives a criteria for when a certain presentation defines an infinite dimensional algebra. In my talk I will assume the main machinery of the Golod-Shafarevich inequality for graded algebras and use it to provide counter examples to certain analogues of the Burnside problem in infinite dimensional algebras and infinite groups. Then, time dependent, I will define the Tarski number for groups relating to the Banach-Tarski paradox and show that we can using the G-S inequality show that the set of Tarski numbers is unbounded. Despite the fact we can only find groups of Tarski number 4, 5 and 6.
Dr Peter Neumann, Emeritus Professor of Mathematics in Oxford and Fellow of the Queen's College, will be awarded an Honorary Doctorate of Science by the University of Hull in January 2016.
The security of pairings-based cryptography relies on the difficulty of two problems: computing discrete logarithms over elliptic curves and, respectively, finite fields GF(p^n) when n is a small integer larger than 1. The real-life difficulty of the latter problem was tested in 2006 by a record in a field GF(p^3) and in 2014 and 2015 by new records in GF(p^2), GF(p^3) and GF(p^4). We will present the new methods of polynomial selection which allowed to obtain these records. Then we discuss the difficulty of DLP in GF(p^6) and GF(p^12) when p has a special form (SNFS) for which two theoretical algorithms were presented recently.
We review some recent progress in computing massless spectra and moduli in heterotic string compactifications. In particular, it was recently shown that the heterotic Bianchi Identity can be accounted for by the construction of a holomorphic operator. Mathematically, this corresponds to a holomorphic double extension. Moduli can then be computed in terms of cohomologies of this operator. We will see how the same structure can be derived form a Gukov-Vafa-Witten type superpotential. We note a relation between the lifted complex structure and bundle moduli, and cover some examples, and briefly consider obstructions and Yukawa couplings arising from these structures.