14:15
14:15
14:15
Painlev'e equations, cluster algebras and quantisation
Abstract
The famous Greek astronomer Ptolemy created his well-known table of chords in order to aid his astronomical observations. This table was based on the renowned relation between the four sides and the two diagonals of a quadrilateral whose vertices lie on a common circle.
In 2002, the mathematicians Fomin and Zelevinsky generalised this relation to introduce a new structure called cluster algebra. This is a set of clusters, each cluster made of n numbers called cluster variables. All clusters are obtained from some initial cluster by a sequence of transformations called mutations. Cluster algebras appear in a variety of topics, including total positivity, number theory, Teichm\”uller theory and computer graphics. A quantisation procedure for cluster algebras was proposed by Berenstein and Zelevinsky in 2005.
After introducing the basics about cluster algebras, in this talk we will link cluster algebras to the theory of Painlevé equations. This link will provide the foundations to introduce a new class of cluster algebras of geometric type. We will show that the quantisation of these new cluster algebras provide a geometric setting for the Berenstein–Zelevinsky construction.
14:15
Gopakumar-Vafa invariants and Hilbert schemes of points on a locally planar curve
14:15
The complex geometry of Teichmüller spaces and bounded symmetric domains.
Abstract
From a complex analytic perspective, both Teichmüller spaces and
symmetric spaces can be realised as contractible bounded domains, that
have several features in common but also exhibit many differences. In
this talk we will study isometric maps between these two important
classes of bounded domains equipped with their intrinsic Kobayashi metric.
14:15
15:00
Multi Party Computation: Low Communication Protocols
Abstract
In recent years there has been amazing progress in building
practical protocols for Multi-Party Computation (MPC).
So much progress in fact that there are now a number of
companies producing products utilizing this technology. A major issue with existing solutions is the high round
complexity of protocols involving more than two players. In this talk I will survey the main protocols for MPC
and recent ideas in how to obtain practical low round
complexity protocols.
Weak solutions to the Navier-Stokes initial boundary value problem in exterior domains with initial data in L(3,∞)
Abstract
We consider the Navier-Stokes initial boundary value problem (NS-IBVP) in a smooth exterior domain. We are interested in establishing existence of weak solutions (we mean weak solutions as synonym of solutions global in time) with an initial data in L(3,∞)
Ancient Solutions to Navier-Stokes Equations in Half Space
Abstract
The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin
Non-orientable line defects in the Landau-de Gennes theory of nematic liquid crystals
Abstract
Energy decay in a 1D coupled heat-wave system
Abstract
We study a simple one-dimensional coupled heat wave system, obtaining a sharp estimate for the rate of energy decay of classical solutions. Our approach is based on the asymptotic theory of $C_0$-semigroups and in particular on a result due to Borichev and Tomilov (2010), which reduces the problem of estimating the rate of energy decay to finding a growth bound for the resolvent of the semigroup generator. This technique not only leads to an optimal result, it is also simpler than the methods used by other authors in similar situations and moreover extends to problems on higher-dimensional domains. Joint work with C.J.K. Batty (Oxford) and L. Paunonen (Tampere).