(COW SEMINAR) Uniformizing the moduli space of abelian 6-folds
Abstract
By classical results of Mumford and Donagi, Mori-Mukai, Verra, the moduli spaces A_g of principally polarized abelian varieties of dimension g are unirational for g≤5 and are of general type for g≥7. Answering a conjecture of Kanev, we provide a uniformization of A6 by a Hurwitz space parameterizing certain curve covers. Using this uniformization, we study the geometry of A6 and make advances towards determining its birational type. This is a joint work with Donagi-Farkas-Izadi-Ortega.
Motives over Abelian geometries via relative power structures
Abstract
We describe the cohomology of moduli spaces of points on schemes over Abelian varieties and give explicit calculations for schemes in dimensions less that three. The construction of Gulbrandsen allows one to consider virtual motives in dimension three. In particular we see a new proof of his conjectures on the Euler numbers of generalized Kummer schemes recently proven by Shen. Joint work in progress with Junliang Shen.
Donaldson-Thomas theory for Calabi-Yau 4-folds
Abstract
Donaldson-Thomas theory for Calabi-Yau 3-folds is a complexification of Chern-Simons theory. In this talk, I will discuss joint work with Naichung Conan Leung on the complexification of Donaldson theory.
15:15
(COW seminar) The derived category of moduli spaces of vector bundles on curves
Abstract
Let X be a smooth projective curve (of genus greater than or equal to 2) over C and M the moduli space of vector bundles over X, of rank 2 and with fixed determinant of degree 1.Then the Fourier-Mukai functor from the bounded derived category of coherent sheaves on X to that of M, given by the normalised Poincare bundle, is fully faithful, except (possibly) for hyperelliptic curves of genus 3,4,and 5
This result is proved by establishing precise vanishing theorems for a family of vector bundles on the moduli space M.
Results on the deformation and inversion of Picard bundles (already known) follow from the full faithfulness of the F-M functor
14:15
14:15