The Closest Point Method and Multigrid solvers for elliptic equations on surfaces.
Abstract
This talk concerns the numerical solution of elliptic partial differential equations posed on general smooth surfaces by the Closest Point Method. Based on the closest point representation of the surface, we formulate an embedding equation in a narrow band surrounding the surface, then discretize it using standard finite differences and interpolation schemes. Numerical convergence of the method will be discussed. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method which makes use of the closest point representation of the surface.