Tue, 24 Feb 2026
15:00
L6

TBC

Cameron Rudd
((Mathematical Institute University of Oxford))
Abstract

to follow

Tue, 20 Jan 2026
15:00
L6

Waist inequalities on groups and spaces

David Hume
Abstract
The waist inequality is a topologist's version of the rank-nullity theorem in linear algebra. It states that for any continuous map from a ball of radius $R$ in $\mathbb R^n$ to $\mathbb R^q$ there is a point in $\mathbb R^q$ whose preimage is comparable in size to the ball of radius $R$ in $\mathbb R^{n-q}$.
 
There are now several proofs of this remarkable result. This talk will focus on a particular "coarse" version due to Gromov that lends itself to applications in coarse geometry and geometric group theory. I will formally introduce these new tools, explain the (few) things we already know about them, and give many suggestions for things we really ought to know.
Mon, 13 Oct 2025
16:45
L5

Varieties over free associative algebras

Zlil Sela
Abstract
In the 1960s and 1970s ring theorists (P. M. Cohn, G.Bergman and others) tried to study the structure of sets of solutions to systems of (polynomial) equations (varieties) over free associative algebras. They found significant pathologies that demonstrated the difficulty to achieve their goal.
 
In an ongoing joint work with A. Atkarskaya we modify techniques that were used to study varieties over free groups and semigroups to study the structure of varieties over associative algebras. Along the way we find new structures also in free groups and semigroups. 
Mon, 01 Dec 2025
14:15
L4

Bubble sheets and $\kappa$-solutions in four-dimensional Ricci flow

Patrick Donovan
(UNSW Sydney)
Abstract

As discovered by Perelman, the study of ancient Ricci flows which are $\kappa$-noncollapsed is a crucial prerequisite to understanding the singularity behaviour of more general Ricci flows. In dimension three, these so-called "$\kappa$-solutions" have been fully classified through the groundbreaking work of Brendle, Daskalopoulos, and Šešum. Their classification result can be extended to higher dimensions, but only for those Ricci flows that have uniformly positive isotropic curvature (PIC), as well as weakly-positive isotropic curvature of the second type (PIC2); it appears the classification result fails with only minor modifications to the curvature assumption. Indeed, with the alternative assumption of non-negative curvature operator, a rich variety of new examples emerge, as recently constructed by Buttsworth, Lai, and Haslhofer; Haslhofer himself has conjectured that this list of non-negatively curved $\kappa$-solutions is now exhaustive in dimension four. In this talk, we will discuss some recent progress towards resolving Haslhofer's conjecture, including a compactness result for non-negatively curved $\kappa$-solutions in dimension four, and a symmetry improvement result for bubble-sheet regions. This is joint work with Anusha Krishnan and Timothy Buttsworth. 

Mon, 24 Nov 2025
14:15
L4

Towards a Taub-Bolt to Taub-NUT via Ricci flow with surgery

John Hughes
(Oxford University)
Abstract

A conjecture of Holzegel, Schmelzer and Warnick states that there is a Ricci flow with surgery connecting the two Ricci flat metrics Taub-Bolt and Taub-NUT. We will present some recent progress towards proving this conjecture. This includes showing for the first time the existence of a Ricci flow with surgery with local topology change $\mathbb{CP}^2\setminus\{ \mathrm{pt}\} \rightarrow \mathbb{R}^4$.

Subscribe to