Tue, 27 May 2025

10:30 - 17:30
L3

One-Day Meeting in Combinatorics

Multiple
Further Information

The speakers are Yuval Wigderson (ETH Zurich), Liana Yepremyan (Emory), Dan Kráľ (Leipzig University and MPI-MiS), Marthe Bonamy (Bordeaux), and Agelos Georgakopoulos (Warwick). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Tue, 17 Jun 2025

14:00 - 15:00
L4

TBA

Imre Leader
(University of Cambridge)
Tue, 13 May 2025

14:00 - 15:00
L4

Frame matroids with a distinguished frame element

James Davies
(University of Cambridge)
Abstract

A matroid is frame if it can be extended such that it possesses a basis $B$ (a frame) such that every element is spanned by at most two elements of $B$. Frame matroids extend the class of graphic matroids and also have natural graphical representations. We characterise the inequivalent graphical representations of 3-connected frame matroids that have a fixed element $\ell$ in their frame $B$. One consequence is a polynomial time recognition algorithm for frame matroids with a distinguished frame element.

Joint work with Jim Geelen and Cynthia Rodríquez.

Tue, 06 May 2025

14:00 - 15:00
L4

Optimally packing Hamilton cycles in random directed digraphs

Adva Mond
(King's College London)
Abstract

At most how many edge-disjoint Hamilton cycles does a given directed graph contain? It is easy to see that one cannot pack more than the minimum in-degree or the minimum out-degree of the digraph. We show that in the random directed graph $D(n,p)$ one can pack precisely this many edge-disjoint Hamilton cycles, with high probability, given that $p$ is at least the Hamiltonicity threshold, up to a polylog factor.

Based on a joint work with Asaf Ferber.

Tue, 29 Apr 2025

14:00 - 15:00
L4

Surprising orderings

Jaroslav Nešetřil
(Charles University)
Abstract

Graphs (and structures) which have a linear ordering of their vertices with given local properties have a rich spectrum of complexities. Some have full power of class NP (and thus no dichotomy) but for biconnected patterns we get dichotomy. This also displays the importance of Sparse Incomparability Lemma. This is a joint work with Gabor Kun (Budapest).

Subscribe to