GSA SPARK 2025 is starting next week!

This is a 21-day challenge from 24th November until 14th December, packed with exciting puzzles and problems inspired by the classic advent calendar. Each day, you’ll tackle new challenges designed to test your maths, coding, and problem solving skills. 

This challenge is for: 

The School of Mathematics at Cardiff University are advertising a PhD on Monoidal Categories in Mathematical Physics. The project will study monoidal categories (also called tensor categories) and how they can appear as symmetry structures in quantum physics.

The Open Research Experiences for Graduates and Undergraduates (OREGU) program at BAUM TenPers Research Institute is designed for students interested in pursuing a PhD or Master’s in Economics, Finance, Applied Mathematics, Statistics, Financial Engineering, or Financial Mathematics. This tailored remote program offers 1) formal research training and 2) exposure to graduate-level coursework under the guidance of experienced instructors.

Maths

 

It's the Week 6 Student Bulletin! 

Only two more weeks of Michaelmas term, last push on deadlines before a (hopefully) relaxing break. 

Fri, 13 Mar 2026

11:00 - 12:00
L4

Stop abusing Turing

Dr Thomas Woolley
(Dept of Maths Cardiff University)
Abstract

Everything you have been taught about Turing patterns is wrong! (Well, not everything, but qualifying statements tend to weaken a punchy first sentence). Turing patterns are universally used to generate and understand patterns across a wide range of biological phenomena. They are wonderful to work with from a theoretical, simulation and application point of view. However, they have a paradoxical problem of being too easy to produce generally, whilst simultaneously being heavily dependent on the details. In this talk I demonstrate how to fix known problems such as small parameter regions and sensitivity, but then highlight a new set of issues that arise from usually overlooked issues, such as boundary conditions, initial conditions, and domain shape. Although we’ve been exploring Turing’s theory for longer than I’ve been alive, there’s still life in the old (spotty) dog yet.

Fri, 06 Mar 2026

11:00 - 12:00
L4

Identifiability of stochastic and spatial models in mathematical biology

Dr Alexander Browning
(Dept of Mathematics University of Melbourne)
Abstract
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Requisite to identifiability from a finite amount of noisy data is that model parameters are first structurally identifiable: a mathematical question that establishes whether multiple parameter values may give rise to indistinguishable model outputs. Approaches to assess structural identifiability of deterministic ordinary differential equation models are well-established, however tools for the assessment of the increasingly relevant stochastic and spatial models remain in their infancy. 
 
I provide in this talk an introduction to structural identifiability, before presenting new frameworks for the assessment of stochastic and partial differential equations. Importantly, I discuss the relevance of our methodology to model selection, and more the practical and aptly named practical identifiability of parameters in the context of experimental data. Finally, I conclude with a brief discussion of future research directions and remaining open questions.
Fri, 27 Feb 2026

11:00 - 12:00
L4

The life of a Turing Pattern

Dr Robert Van Gorder
(Department of Mathematics and Statistics University of Otago)
Abstract

We survey the life of a Turing pattern, from initial diffusive instability through the emergence of dominant spatial modes and to an eventual spatially heterogeneous pattern. While many mathematically ideal Turing patterns are regular, repeating in structure and remaining of a fixed length scale throughout space, in the real world there is often a degree of irregularity to patterns. Viewing the life of a Turing pattern through the lens of spatial modes generated by the geometry of the bounded space domain housing the Turing system, we discuss how irregularity in a Turing pattern may arise over time due to specific features of this space domain or specific spatial dependencies of the reaction-diffusion system generating the pattern.

Fri, 20 Feb 2026

11:00 - 12:00
L4

The rogue within: uncovering hidden heterogeneity in heart cell networks

Dr Noemi Picco
(Dept. of Maths, Swansea University)
Abstract

Normal heart function relies of the fine-tuned synchronization of cellular components. In healthy hearts, calcium oscillations and physical contractions are coupled across a synchronised network of 3 billion heart cells. When the process of functional isolation of rogue cells isn’t successful, the network becomes maladapted, resulting in cardiovascular diseases, including heart failure and arrythmia. To advance knowledge on this normal-to-disease transition we must first address the lack of a mechanistic understanding of the plastic readaptation of these networks. In this talk I will explore coupling and loss of synchronisation using a mathematical model of calcium oscillations informed by experimental data. I will show some preliminary results pointing at the heterogeneity hidden behind seemingly uniform cell populations, as a causative mechanism behind disrupted dynamics in maladapted networks.

Subscribe to