Nicola Pedreschi was a postdoc in Oxford Mathematics until the summer. But like several Oxford Mathematicians he is a musician, in Nicola's case in the band Eveline's Dust. So here is the lead single from their new album. This is their website.
13:00
Randomised Quantum Circuits for Practical Quantum Advantage
Abstract
Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.
Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage but these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will detail a range of application areas of randomised quantum circuits, such as quantum algorithms, classical shadows, and quantum error mitigation introducing recent results that help lower the barrier for practical quantum advantage.
16:00
Random growth models with half space geometry
Abstract
16:00
Cusp forms of level one and weight zero
Abstract
16:00
An analytic formula for points on elliptic curves
Abstract
Given an elliptic curve over the rationals, a natural problem is to find an explicit point of infinite order over a given number field when there is expected to be one. Geometric constructions are known in only two different settings. That of Heegner points, developed since the 1950s, which yields points over abelian extensions of imaginary quadratic fields. And that of Stark-Heegner points, from the late 1990s: here the points constructed are conjectured to be defined over abelian extensions of real quadratic fields. I will describe a new analytic formula which encompasses both of these, and conjecturally yields points in many other settings. This is joint work with Henri Darmon and Victor Rotger.
16:00
Risk, utility and sensitivity to large losses
Please join us for refreshments outside the lecture room from 15:30.