Tue, 30 May 2023

12:00 - 13:15
L3

Bethe ansatz in 2d conformal field theory

Tomáš Prochazka
(Institute of Physics of the Czech Academy of Sciences)
Abstract

The usual approach to study 2d CFT relies on the Virasoro algebra and its representation theory. Moving away from the criticality, this infinite dimensional symmetry is lost so it is useful to have a look at 2d CFTs from the point of view of more general framework of quantum integrability. Every 2d conformal field theory has a natural infinite dimensional family of commuting higher spin conserved quantities that can be constructed out of Virasoro generators. Perhaps surprisingly two different sets of Bethe ansatz equations are known that diagonalise these. The first one is of Gaudin/Calogero type and was discovered by Bazhanov–Lukyanov–Zamolodchikov in the context of ODE/IM correspondence. The second set is a very natural generalisation of the Bethe ansatz for the Heisenberg XXX spin chain and was found more recently by Litvinov. I will discuss these constructions as well as their relation to W-algebras and the affine Yangian.

Tue, 16 May 2023
14:30
L3

On the Initialisation of wide Neural Networks: the Edge of Chaos

Thiziri Nait Saada
(University of Oxford)
Abstract

 Wide Neural Networks are well known for their Gaussian Process behaviour. Based upon this fact, an initialisation scheme for the weights and biases of a network preserving some geometrical properties of the input data is presented — The edge-of-chaos. This talk will introduce such a scheme before briefly mentioning a recent contribution related to the edge-of-chaos dynamics of wide randomly initialized low-rank feedforward networks. Formulae for the optimal weight and bias variances are extended from the full-rank to low-rank setting and are shown to follow from multiplicative scaling. The principle second order effect, the variance of the input-output Jacobian, is derived and shown to increase as the rank to width ratio decreases. These results inform practitioners how to randomly initialize feedforward networks with a reduced number of learnable parameters while in the same ambient dimension, allowing reductions in the computational cost and memory constraints of the associated network.

Tue, 13 Jun 2023

15:00 - 16:00
L4

Surface subgroups, virtual homology and finite quotients

Jonathan Fruchter
Abstract

We begin with a seemingly simple question: how can one distinguish a surface group from other cyclic amalgamations of two free groups? This question will prompt a (geometrically flavoured) investigation of virtual homological properties of graphs of free groups amalgamated along cyclic edge groups, where surface subgroups play a key role. 

We next turn to study limit groups and residually free groups through their finite quotients, and apply our findings to the study of profinite rigidity within these classes of groups. In particular, we will sketch out why a direct product of free and surface groups cannot have the same finite quotients as any other finitely presented residually free group.

If time permits, we will discuss other possible characterizations of surface groups among limit groups. The talk is based on joint work with Ismael Morales.

 

Tue, 30 May 2023

15:00 - 16:00
L3

On fundamental groups of an affine manifolds

Gregory Soifer
Abstract

The study of the fundamental group of an affine manifold has a long history that goes back to Hilbert’s 18th problem. It was asked if the fundamental group of a compact Euclidian affine manifold has a subgroup of a finite index such that every element of this subgroup is translation. The motivation was the study of the symmetry groups of crys- talline structures which are of fundamental importance in the science of crystallography. A natural way to generalize the classical problem is to broaden the class of allowed mo- tions and consider groups of affine transformations. In 1964, L. Auslander in his paper ”The structure of complete locally affine manifolds” stated the following conjecture, now known as the Auslander conjecture: The fundamental group of a compact complete locally flat affine manifold is virtually solvable.

In 1977, in his famous paper ”On fundamental groups of complete affinely flat manifolds”, J.Milnor asked if a free group can be the fundamental group of complete affine flat mani- fold.
The purpose of the talk is to recall the old and to talk about new results, methods and conjectures which are important in the light of these questions .

The talk is aimed at a wide audience and all notions will be explained 1

Tue, 23 May 2023

15:00 - 16:00
L3

Uniform boundary representation of hyperbolic groups

Kevin Boucher
Abstract

After a brief introduction to subject of spherical representations of hyperbolic groups, I will present a new construction motivated by a spectral formulation of the so-called Shalom conjecture.This a joint work with Dr Jan Spakula.

Tue, 16 May 2023

15:00 - 16:00
L3

Parabolic representations of the free group F_2 in PSL(2,C)

Gaven Martin
Abstract

A parabolic representation of the free group  is one in which the images of both generators are parabolic elements of $PSL(2,\IC)$. The Riley slice is a closed subset ${\cal R}\subset \IC$ which is a model for the moduli space of parabolic, discrete and faithful representations. The complement of the Riley slice is a bounded Jordan domain within which there are isolated points, accumulating only at the boundary, corresponding to parabolic discrete and faithful representations of rigid subgroups of $PSL(2,\IC)$. Recent work of Aimi, Akiyoshi, Lee, Oshika, Parker, Lee, Sakai, Sakuma \& Yoshida, have topologically identified all these groups. Here we give the first  substantive properties of the nondiscrete representations using ergodic properties of the action of a polynomial semigroup and identifying the Riley slice as the ``Julia set’’ of this dynamical system. We prove a supergroup density theorem: given any irreducible parabolic representation of $F_2$ whatsoever, {\em any}  non-discrete parabolic representation has an arbitrarily small perturbation which contains that group as a conjugate.  Using these ideas we then show that there are nondiscrete parabolic representations with an arbitrarily large number of distinct Nielsen classes of parabolic generators.

Tue, 09 May 2023

15:00 - 16:00
L3

Why I wish we knew more about ribbon groups

Stefan Friedl
Abstract

To a group theorist ribbon groups look like knot groups, except  that we know everything about knot groups and next to nothing about ribbon groups.

I will talk about an old paper of mine with Peter Teichner where several questions on ribbon groups naturally arise.

 

Tue, 02 May 2023

15:00 - 16:00
L3

Centralising Outer Automorphisms

Naomi Andrew
Abstract

Given a group G, one can seek to understand (some of) its subgroups. Centralisers of elements are easy to define, but maybe not so easy to understand: even in such well studied groups as Out(Fn) they are not yet understood in general. I'll discuss recent work with Armando Martino where we extend what is known in Out(Fn), involving a (surprising?) connection to free-by-cyclic groups and their automorphisms as well as working with actions on trees. The strategies seem like they should apply in many more cases, and if time allows I'll discuss ongoing work (with Gilbert Levitt and Armando Martino) exploring these possibilities.

Tue, 25 Apr 2023

15:00 - 16:00
L3

On the structure of quotients of cubulated groups

Macarena Arenas
Abstract

This talk will be an invitation to the study of cubulated groups and their quotients via the tools of cubical small cancellation theory. Non-positively curved cube complexes are a class of cell-complexes whose geometry and combinatorial structure is closely related to the structure of the groups that act nicely on their universal covers. I will tell you a bit about what we know and don’t know about these groups and spaces, and about the tools we have to study their quotients. I will explain some applications of the study of these quotients to producing a large variety of examples of large-dimensional hyperbolic (and non-hyperbolic) groups.

 

Subscribe to