Introduction to the special collection in honor of Avner Friedman
Othmer, H Lou, Y Maini, P Ledzewicz, U Journal of Mathematical Biology volume 86 issue 3 (25 Jan 2023)
Assessing the Threat of Major Outbreaks of Vector-Borne Diseases Under a Changing Climate
Thompson, R Thompson, M Hurrell, J Sun, L Obolski, U Astrophysics and Space Science Proceedings volume 57 25-35 (19 Dec 2020)
Mon, 13 Feb 2023
13:00
L1

Knot Homologies from Landau Ginsburg Models

Miroslav Rapcak
(Cern)
Abstract

In her recent work, Mina Aganagic proposed novel perspectives on computing knot homologies associated with any simple Lie algebra. One of her proposals relies on counting intersection points between Lagrangians in Landau-Ginsburg models on symmetric powers of Riemann surfaces. In my talk, I am going to present a concrete algebraic algorithm for finding such intersection points, turning the proposal into an actual calculational tool. I am going to illustrate the construction on the example of the sl_2 invariant for the Hopf link. I am also going to comment on the extension of the story to homological invariants associated to gl(m|n) super Lie algebras, solving this long-standing problem. The talk is based on our work in progress with Mina Aganagic and Elise LePage.

Mon, 13 Mar 2023
14:15
L4

Categorical and K-theoretic Donaldson-Thomas theory of $\mathbb{C}^3$

Tudor Pădurariu
(Columbia University)
Abstract

Donaldson-Thomas theory associates integers (which are virtual counts of sheaves) to a Calabi-Yau threefold X. The simplest example is that of $\mathbb{C}^3$, when the Donaldson-Thomas (DT) invariant of sheaves of zero dimensional support and length d is $p(d)$, the number of plane partitions of $d$. The DT invariants have several refinements, for example a cohomological one, where instead of a DT invariant, one studies a graded vector space with Euler characteristic equal to the DT invariant. I will talk about two other refinements (categorical and K-theoretic) of DT invariants, focusing on the explicit case of $\mathbb{C}^3$. In particular, we show that the K-theoretic DT invariant for $d$ points on $\mathbb{C}^3$ also equals $p(d)$. This is joint work with Yukinobu Toda.

Fri, 10 Mar 2023

15:00 - 16:00
Lecture Room 4

Mapper--type algorithms for complex data and relations

Radmila Sazdanovic
Abstract

Mapper and Ball Mapper are Topological Data Analysis tools used for exploring high dimensional point clouds and visualizing scalar–valued functions on those point clouds. Inspired by open questions in knot theory, new features are added to Ball Mapper that enable encoding of the structure, internal relations and symmetries of the point cloud. Moreover, the strengths of Mapper and Ball Mapper constructions are combined to create a tool for comparing high dimensional data descriptors of a single dataset. This new hybrid algorithm, Mapper on Ball Mapper, is applicable to high dimensional lens functions. As a proof of concept we include applications to knot and game  theory, as well as material science and cancer research. 

Fri, 03 Mar 2023

16:00 - 17:00
Lecture Room 6

Topological Optimization with Big Steps

Dmitry Morozov
Abstract

Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude. (Joint work with Arnur Nigmetov.)

Fri, 24 Feb 2023

15:00 - 16:00
Lecture Room 4

Analysing the shape of 3-periodic scalar fields for diffusion modelling

Senja Barthel
Abstract

Simulating diffusion computationally allows to predict the diffusivity of materials, understand diffusion mechanisms, and to tailor-make materials such as solid-state electrolytes with desired properties aiming at developing new batteries. By studying the geometry and topology of 3-periodic scalar fields (e.g. the potential of ions in the electrolyte), we develop a cost-efficient multi-scale model for diffusion in crystalline materials. This project is a typical example of a collaboration in the overlap of topology and materials science that started as a persistent homology project and turned into something else.

Fri, 17 Feb 2023

15:00 - 16:00
Lecture Room 4

Mobius Inversions and Persistent Homology

Amit Patel
Abstract

There are several ways of defining the persistence diagram, but the definition using the Möbius inversion formula (for posets) offers the greatest amount of flexibility. There are now many variations of the so called Generalized Persistence Diagrams by many people.  In this talk, I will focus on the approach I am developing. I will cover the state-of-the-art and where I see this work going.

Thu, 16 Feb 2023
17:00
L3

Semi-retractions, pre-adjunctions, and examples

Dana Bartošová
(University of Florida)
Abstract

We will define a notion of a semi-retraction between two first-order structures introduced by Scow. We show how a semi-retraction encodes Ramsey problems of finitely-generated substructes of one structure into the other under the most general conditions. We will compare semi-retractions to a category-theoretic notion of pre-adjunction recently popularized by Masulovic. We will accompany the results with examples and questions. This is a joint work with Lynn Scow.

Subscribe to