Gibbs measures, canonical stochastic quantization, and singular stochastic wave equations
Abstract
In this talk, I will discuss the (non-)construction of the focusing Gibbs measures and the associated dynamical problems. This study was initiated by Lebowitz, Rose, and Speer (1988) and continued by Bourgain (1994), Brydges-Slade (1996), and Carlen-Fröhlich-Lebowitz (2016). In the one-dimensional setting, we consider the mass-critical case, where a critical mass threshold is given by the mass of the ground state on the real line. In this case, I will show that the Gibbs measure is indeed normalizable at the optimal mass threshold, thus answering an open question posed by Lebowitz, Rose, and Speer (1988).
In the three dimensional-setting, I will first discuss the construction of the $\Phi^3_3$-measure with a cubic interaction potential. This problem turns out to be critical, exhibiting a phase transition:normalizability in the weakly nonlinear regime and non-normalizability in the strongly nonlinear regime. Then, I will discuss the dynamical problem for the canonical stochastic quantization of the $\Phi^3_3$-measure, namely, the three-dimensional stochastic damped nonlinear wave equation with a quadratic nonlinearity forced by an additive space-time white noise (= the hyperbolic $\Phi^3_3$-model). As for the local theory, I will describe the paracontrolled approach to study stochastic nonlinear wave equations, introduced in my work with Gubinelli and Koch (2018). In the globalization part, I introduce a new, conceptually simple and straightforward approach, where we directly work with the (truncated) Gibbs measure, using the variational formula and ideas from theory of optimal transport.
The first part of the talk is based on a joint work with Philippe Sosoe (Cornell) and Leonardo Tolomeo (Bonn/Edinburgh), while the second part is based on a joint work with Mamoru Okamoto (Osaka) and Leonardo Tolomeo (Bonn/Edinburgh).
10:00
Dynamical ticket pricing for movies
Note: we would recommend to join the meeting using the Teams client for best user experience.
Abstract
Movie Me would like offer dynamical pricing for movie tickets, considering consumer’s demand for the movie, showtime and lead time before the show begins, such that the overall quantity of tickets sold is maximized. We encourage all interested party to join us and especially those interested in data science, optimization and mathematical finance.
15:30
Modular Functors and Factorization Homology
Abstract
A modular functor is defined as a system of mapping class group representations on vector spaces (the so-called conformal blocks) that is compatible with the gluing of surfaces. The notion plays an important role in the representation theory of quantum groups and conformal field theory. In my talk, I will give an introduction to the theory of modular functors and recall some classical constructions. Afterwards, I will explain the approach to modular functors via cyclic and modular operads and their bicategorical algebras. This will allow us to extend the known constructions of modular functors and to classify modular functors by certain cyclic algebras over the little disk operad for which an obstruction formulated in terms of factorization homology vanishes. (The talk is based to a different extent on different joint works with Adrien Brochier, Lukas Müller and Christoph Schweigert.)
15:30
An SL₂(R) Casson-Lin invariant
Abstract
Around 30 years ago, Lin defined an analog of the Casson invariant for knots. This invariant counts representations of the knot group into SU(2) which satisfy tr(ρ(m)) = c for some fixed c. As a function of c, the Casson-Lin invariant turns out to be given by the Levine-Tristram signature function.
If K is a small knot in S³, I'll describe a version of the Casson-Lin invariant which counts representations of the knot group into SL₂(R) with tr(ρ(m)) = c for c in [-2,2]. The sum of the SU(2) and SL₂(R) invariants is a constant h(K), independent of c. I'll discuss the proof of this fact and give some applications to the existence of real parabolic representations and left-orderings. This is joint work with Nathan Dunfield.