Mon, 24 Oct 2022
13:00
L1

Decomposition and condensation defects in 3d

Ling Lin
(Oxford)
Abstract

Quantum field theories (QFTs) in d dimensions that posses a (d-1)-form symmetry are conjectured to decompose into disjoint “universes”, each of which is itself a (local and unitary) QFT. I will give an overview of our current understanding of decomposition, and then discuss how this phenomenon occurs in the fusion of condensation defects of certain 3d QFTs. This gives a “microscopic” explanation of why in these instances, the fusion coefficient can be taken as an integer rather than a general TQFT.

Some of us have a jukebox (see wiki if under 40) in our heads. You know how it is, someone speaks and a song is already playing.

So when Maria and Beth from the Events team were discussing whether a black sculpture could sit on a black tablecloth (it couldn't) the song was ready and waiting in your editor's head. He suspects he had the (inferior) disco version in mind, but just in case here are both well-known versions, the first by the Spanish band Los Bravos, the second by French disco divas Belle Epoque.

Mon, 14 Nov 2022
14:15
L5

K-theoretic DT/PT invariants on Calabi-Yau 4-(orbi)folds

Sergej Monavari
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Donaldson-Thomas theory is classically defined for moduli spaces of sheaves over a Calabi-Yau threefold. Thanks to recent foundational work of Cao-Leung, Borisov-Joyce and Oh-Thomas, DT theory has been extended to Calabi-Yau 4-folds. We discuss how, in this context, one can define natural K-theoretic refinements of Donaldson-Thomas invariants (counting sheaves on Hilbert schemes) and Pandharipande-Thomas invariants (counting sheaves on moduli spaces of stable pairs) and how — conjecturally — they are related. Finally, we introduce an extension of DT invariants to Calabi-Yau 4-orbifolds, and propose a McKay-type correspondence, which we expect to be suitably interpreted as a wall-crossing phenomenon. Joint work (in progress) with Yalong Cao and Martijn Kool.

Mon, 21 Nov 2022
14:15
L5

Cohomological Hall algebras and stable envelopes of Nakajima varieties

Tommaso Maria Botta
(ETH Zurich)
Abstract

Over the last years, two different approaches to construct symmetry algebras acting on the cohomology of Nakajima quiver varieties have been developed. The first one, due to Maulik and Okounkov, exploits certain Lagrangian correspondences, called stable envelopes, to generate R-matrices for an arbitrary quiver and hence, via the RTT formalism, an algebra called Yangian. The second one realises the cohomology of Nakajima varieties as modules over the cohomological Hall algebra (CoHA) of the preprojective algebra of the quiver Q. It is widely expected that these two approaches are equivalent, and in particular that the Maulik-Okounkov Yangian coincides with the Drinfel’d double of the CoHA.

Motivated by this conjecture, in this talk I will show how to identify the stable envelopes themselves with the multiplication map of a subalgebra of the appropriate CoHA. 

As an application, I will introduce explicit inductive formulas for the stable envelopes and use them to produce integral solutions of the elliptic quantum Knizhnik–Zamolodchikov–Bernard (qKZB) difference equation associated to arbitrary quiver (ongoing project with G. Felder and K. Wang). Time permitting, I will also discuss connections with Cherkis bow varieties in relation to 3d Mirror symmetry (ongoing project with R. Rimanyi).

Mon, 07 Nov 2022
14:15
L5

Counting sheaves on curves

Chenjing Bu
((Oxford University))
Abstract

I will talk about homological enumerative invariants for vector bundles on algebraic curves. These invariants were defined by Joyce, and encode rich information about the moduli space of semistable vector bundles, such as its volume and intersection numbers, which were computed by Witten, Jeffrey and Kirwan in previous work. I will define a notion of regularization of divergent infinite sums, and I will express the invariants explicitly as such a divergent sum in a vertex algebra.

Fri, 21 Oct 2022

14:00 - 15:00
L6

Module categories for $\text{Tilt}(SL_{2k+1})$ from $\tilde{A}_{n-1}$-buildings

Emily McGovern
(North Carolina State University)
Further Information

We will be streaming this seminar in L6 but feel free to join online.

Abstract

We show that the category of vector bundles over the vertices of a locally finite $\tilde{A}_{n-1}$ building $\Delta$, $Vec(\Delta)$, has the structure of a $Tilt(SL_{2k+1})$ module category. This module category is the $q$-analogue of the $Tilt(SL_{2k+1})$ action on vector bundles over the $sl_n$ weight lattice.  Our construction of the $Tilt(SL_{2k+1})$ action on $Vec(\Delta)$ extends to $Vec(\Delta)^{G}$, its equivariantization, which gives us a class of non-standard $Tilt(SL_{2k+1})$ module categories. When $G$ acts simply transitively, this recovers the fiber functors of Jones.

Mon, 31 Oct 2022
14:15
L5

Closed Ricci Flows with Singularities Modeled on Asymptotically Conical Shrinkers

Max Stolarski
(University of Warwick)
Abstract

Shrinking Ricci solitons are Ricci flow solutions that self-similarly shrink under the flow. Their significance comes from the fact that finite-time Ricci flow singularities are typically modeled on gradient shrinking Ricci solitons. Here, we shall address a certain converse question, namely, “Given a complete, noncompact gradient shrinking Ricci soliton, does there exist a Ricci flow on a closed manifold that forms a finite-time singularity modeled on the given soliton?” We’ll discuss work that shows the answer is yes when the soliton is asymptotically conical. No symmetry or Kahler assumption is required, and so the proof involves an analysis of the Ricci flow as a nonlinear degenerate parabolic PDE system in its full complexity. We’ll also discuss applications to the (non-)uniqueness of weak Ricci flows through singularities.

Mon, 24 Oct 2022
14:15
L5

Hitchin representations and minimal surfaces in symmetric spaces

Nathaniel Sagman
(University of Luxembourg)
Abstract

Labourie proved that every Hitchin representation into PSL(n,R) gives rise to an equivariant minimal surface in the corresponding symmetric space. He conjectured that uniqueness holds as well (this was known for n=2,3), and explained that if true, then the Hitchin component admits a mapping class group equivariant parametrization as a holomorphic vector bundle over Teichmüller space.

In this talk, we will define Hitchin representations, Higgs bundles, and minimal surfaces, and give the background for the Labourie conjecture. We will then explain that the conjecture fails for n at least 4, and point to some future questions and conjectures.

Mon, 17 Oct 2022
14:15
L5

On the inverse problem for isometry groups of norms

Emmanuel Breuillard
((Oxford University))
Abstract

We study the problem of determining when a compact group can be realized as the group of isometries of a norm on a finite dimensional real vector space.  This problem turns out to be difficult to solve in full generality, but we manage to understand the connected groups that arise as connected components of isometry groups. The classification we obtain is related to transitive actions on spheres (Borel, Montgomery-Samelson) on the one hand and to prehomogeneous spaces (Vinberg, Sato-Kimura) on the other. (joint work with Martin Liebeck, Assaf Naor and Aluna Rizzoli)

Wed, 31 May 2023

16:00 - 17:00
L4

Mathematics and its history, through literature

Sarah Hart
(Birkbeck, University of London)
Abstract

Mathematics has always been part of the fabric of culture. References to mathematics in literature go back at least as far as Aristophanes, and encompass everyone from Dostoevsky to Oscar Wilde. In this talk I’ll explore some of the ways that literature has engaged with mathematical ideas, from the 17th and 18th century obsession with the cycloid (the “Helen of Geometry”) to the 19th century love of the fourth dimension.

Subscribe to