Thu, 13 Oct 2022
16:00
L5

The irrationality of a divisor function series of Erdös and Kac

Kyle Pratt
Abstract

For positive integers $k$ and $n$ let $\sigma_k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erd\H{o}s and Kac conjectured that, for every $k$, the number $\alpha_k = \sum_{n\geq 1} \frac{\sigma_k(n)}{n!}$ is irrational. This is known conditionally for all $k$ assuming difficult conjectures like the Hardy-Littlewood prime $k$-tuples conjecture. Before our work it was known unconditionally that $\alpha_k$ is irrational if $k\leq 3$. We discuss some of the ideas in our recent proof that $\alpha_4$ is irrational. The proof involves sieve methods and exponential sum estimates.

Mon, 28 Nov 2022
13:00
L1

Integrability of the Liouville theory

Antti Kupiainen
(Helsinki)
Further Information

Joint Random Matrix Seminar.

Abstract

Conformal Field Theories (CFT) are believed to be exactly solvable once their primary scaling fields and their 3-point functions are known. This input is called the spectrum and structure constants of the CFT respectively. I will review recent work where this conformal bootstrap program can be rigorously carried out for the case of Liouville CFT, a theory that plays a fundamental role in 2d random surface theory and many other fields in physics and mathematics. Liouville CFT has a probabilistic formulation on an arbitrary Riemann surface and the bootstrap formula can be seen as a "quantization" of the plumbing construction of surfaces with marked points axiomatically discussed earlier by Graeme Segal. Joint work with Colin Guillarmou, Remi Rhodes and Vincent Vargas.

Mon, 31 Oct 2022
13:00
L1

Holomorphic twist and Confinement

Jingxiang Wu
(Oxford)
Abstract

I will describe a procedure, known as holomorphic twist, to isolate protected quantities in supersymmetric quantum field theories. The resulting theories are holomorphic, interacting and have infinite dimensional symmetries, analogous to the holomorphic half of a 2D CFT. I will explain how to study quantum corrections to these symmetries and other  higher operations.
As a surprise, we find a novel UV manifestation of
confinement, dubbed "holomorphic confinement," in the example of pure
SU(N) super Yang-Mills.

Mon, 21 Nov 2022
13:00
L1

Effective description of quantum chaos and applications to black holes

Felix Haehl
(Southampton)
Abstract

After reviewing different aspects of thermalization and chaos in holographic quantum systems, I will argue that universal aspects can be captured using an effective field theory framework that shares similarities with hydrodynamics. Focusing on the quantum butterfly effect, I will explain how to develop a simple effective theory of the 'scramblon' from path integral considerations. I will also discuss applications of this formalism to shockwave scattering in black hole backgrounds in AdS/CFT.

Mon, 17 Oct 2022
13:00
L1

Semiclassics for Large Quantum Numbers

Mark Mezei
(Oxford)
Abstract

According to the correspondence principle, classical physics emerges in the limit of large quantum numbers. We examine three examples of the semiclassical description of conformal field theory data: large charge boundary operators in the O(2) model, large spin impurities in the free triplet scalar field theory and large charge Wilson lines in QED. By simultaneously taking the coupling to zero and quantum numbers to infinity, we can connect the microscopic to the emergent classical description smoothly.

Wed, 30 Nov 2022
16:00
L4

Handlebody groups and disk graphs

Panagiotis Papadopoulos
(LMU Munich)
Abstract

The handlebody group is defined as the mapping class group of a three-dimensional handlebody. We will survey some geometric and algebraic properties of the handlebody groups and compare them to those of two of the most studied (classes of) groups in geometric group theory, namely mapping class groups of surfaces, and ${\rm Out}(F_n)$. We will also introduce the disk graph, the handlebody-analogon of the curve graph of a surface, and discuss some of its properties.

Wed, 23 Nov 2022
16:00
L4

A generalized geometric invariant of discrete groups

Kevin Klinge
(KIT)
Abstract

Given a group of type ${\rm FP}_n$, one may ask if this property also holds for its subgroups. The BNS invariant is a subset of the character sphere that fully captures this information for subgroups that are kernels of characters. It also provides an interesting connection of finiteness properties of subgroups and group homology. In this talk I am going to give an introduction to this problem and present an attempt to generalize the BNS invariant to more subgroups than just the kernels of characters.

Wed, 16 Nov 2022
16:00
L4

A brief introduction to higher representation theory

Hao Xu
(University of Göttingen)
Abstract

In recent years, a tend of higher category theory is growing from multiple areas of research throughout mathematics, physics and theoretical computer science. Guided by Cobordism Hypothesis, I would like to introduce some basics of `higher representation theory’, i.e. the part of higher category theory where we focus on the fundamental objects: `finite dimensional’ linear n-categories. If time permits, I will also introduce some recent progress in linear higher categories and motivations from condensed matter physics.

Mon, 28 Nov 2022
16:30
L5

Obstruction-free gluing for the Einstein equations

Stefan Czimek
(Leipzig)
Abstract

We present a new approach to the gluing problem in General Relativity, that is, the problem of matching two solutions of the Einstein equations along a spacelike or characteristic (null) hypersurface. In contrast to previous constructions, the new perspective actively utilizes the nonlinearity of the constraint equations. As a result, we are able to remove the 10-dimensional spaces of obstructions to gluing present in the literature. As application, we show that any asymptotically flat spacelike initial data set can be glued to Schwarzschild initial data of sufficiently large mass. This is joint work with I. Rodnianski.

Mon, 21 Nov 2022
16:30
L5

Hyperbolic Cauchy problems with multiplicities

Claudia Garetto
(Queen Mary)
Abstract

In this talk I will discuss well-posedness of hyperbolic Cauchy problems with multiplicities and the role played by the lower order terms (Levi conditions). I will present results obtained in collaboration with Christian Jäh (Göttingen) and Michael Ruzhansky (QMUL/Ghent) on higher order equations and non-diagonalisable systems.

Subscribe to