Tue, 15 Nov 2022
16:00
C1

Injective factors arising as discrete quantum group von Neumann algebras

Jacek Krajczok
(University of Glasgow)
Abstract

It is well known that if a group von Neumann algebra of a (nontrivial) discrete group is a factor, then it is a factor of type II_1. During the talk, I will answer the following question: which types appear as types of injective factors being group von Neumann algebras of discrete quantum groups (or looking from the dual perspective - von Neumann algebras of bounded functions on compact quantum groups)? An important object in our work is the subgroup of real numbers t for which the scaling automorphism tau_t is inner. This is joint work with Piotr Sołtan.

Tue, 08 Nov 2022
16:00
C1

Interacting Systems – where Analysis, PDEs and Probability meet

Amit Einav
(University of Durham)
Abstract

We are surrounded by systems that involve many elements and the interactions between them: the air we breathe, the galaxies we watch, herds of animals roaming the African planes and even us – trying to decide on whom to vote for.

As common as such systems are, their mathematical investigation is far from simple. Motivated by the realisation that in most cases we are not truly interested in the individual behaviour of each and every element of the system but in the average behaviour of the ensemble and its elements, a new approach emerged in the late 1950s - the so-called mean field limits approach. The idea behind this approach is fairly intuitive: most systems we encounter in real life have some underlying pattern – a correlation relation between its elements. Giving a mathematical interpretation to a given phenomenon and its emerging pattern with an appropriate master/Liouville equation, together with such correlation relation, and taking into account the large number of elements in the system results in a limit equation that describes the behaviour of an average limit element of the system. With such equation, one hopes, we could try and understand better the original ensemble.

In our talk we will give the background to the formation of the ideas governing the mean field limit approach and focus on one of the original models that motivated the birth of the field – Kac’s particle system. We intend to introduce Kac’s model and its associated (asymptotic) correlation relation, chaos, and explore attempts to infer information from it to its mean field limit – The Boltzmann-Kac equation.

Fri, 21 Oct 2022
16:00
C1

Selected aspects of the dynamical Kirchberg-Phillips theorem

Gabor Szabo
(KU Leuven)
Abstract

 I will start this talk with a brief introduction and summary of the outcome of a joint work with James Gabe. An important special case of the main result is that for any countable discrete amenable group G, any two outer G-actions on stable Kirchberg algebras are cocycle conjugate precisely when they are equivariantly KK-equivalent. In the main body of the talk, I will outline the key arguments toward a special case of the 'uniqueness theorem', which is one of the fundamental ingredients in our theory: Suppose we have two G-actions on A and B such that B is a stable Kirchberg algebra and the action on B is outer and equivariantly O_2-absorbing. Then any two cocycle embeddings from A to B are approximately unitarily equivalent. If time permits, I will provide a (very rough) sketch of how this leads to the dynamical O_2-embedding theorem, which implies that such cocycle embeddings always exist in the first place.

Tue, 11 Oct 2022
16:00
C1

Quantum limits

Veronique Fischer
(University of Bath)
Abstract

In this talk, I will discuss the notion of quantum limits from different viewpoints: Cordes' work on the Gelfand theory for pseudo-differential operators dating from the 70’s as well as the micro-local defect measures and semi-classical measures of the 90’s. I will also explain my motivation and strategy to obtain similar notions in subRiemannian or subelliptic settings. 

Neural stochastic PDEs: resolution-invariant learning of continuous spatiotemporal dynamics
Salvi, C Lemercier, M Gerasimovics, A Advances in Neural Information Processing Systems 35 (NeurIPS 2022) volume 3 1333-1344 (01 Apr 2023)
Dynamic fibronectin assembly and remodeling by leader neural crest cells prevents jamming in collective cell migration
Martinson, W McLennan, R Teddy, J McKinney, M Davidson, L Baker, R Byrne, H Kulesa, P Maini, P (16 Sep 2022)
Subscribe to