Tue, 11 Oct 2022
14:00
L6

A decomposition of the category of l-modular representations of SL_n(F).

Peiyi Cui
(University of East Anglia)
Abstract

Let F be a p-adic field, and k an algebraically closed field of characteristic l different from p. In this talk, we will first give a category decomposition of Rep_k(SL_n(F)), the category of smooth k-representations of SL_n(F), with respect to the GL_n(F)-equivalent supercuspidal classes of SL_n(F), which is not always a block decomposition in general. We then give a block decomposition of the supercuspidal subcategory, by introducing a partition on each GL_n(F)-equivalent supercuspidal class through type theory, and we interpret this partition by the sense of l-blocks of finite groups. We give an example where a block of Rep_k(SL_2(F)) is defined with several SL_2(F)-equivalent supercuspidal classes, which is different from the case where l is zero. We end this talk by giving a prediction on the block decomposition of Rep_k(A) for a general p-adic group A.

A model informed approach to assess the risk of checkpoint inhibitors induced myocarditis
ven der Vegt, S Wang, Y Polonchuk, L Wang, K Waters, S Baker, R Frontiers in Pharmacology volume 13 (26 Sep 2022)
Fri, 02 Dec 2022

14:00 - 15:00
L5

CANCELLED (30/11) Shaping of solids under natural convection

Megan Davies Wykes
(University of Cambridge)
Abstract

Fluids sculpt many of the shapes we see in the world around us. We present a new mathematical model describing the shape evolution of a body that dissolves or melts under gravitationally stable buoyancy-driven convection, driven by thermal or solutal transfer at the solid-fluid interface. For high Schmidt number, the system is reduced to a single integro-differential equation for the shape evolution. Focusing on the particular case of a cone, we derive complete predictions for the underlying self-similar shapes, intrinsic scales and descent rates. We will present the results of new laboratory experiments, which show an excellent match to the theory. By analysing all initial power-law shapes, we uncover a surprising result that the tips of melting or dissolving bodies can either sharpen or blunt with time subject to a critical condition.

Fri, 18 Nov 2022

14:00 - 15:00
L5

From grain transport to aeolian and fluvial dynamics: a field-model approach

Pauline Delorme
(University of Hull)
Abstract

The evolution of land surfaces is partly cause by the erosion, transport and deposition of sediment. My research aims to understand the origin and evolution of landscapes, using the tools of fluid mechanics. I am particularly interested in aeolian and fluvial transport of sediments. To do this, I use a multi-method approach (theoretical/numerical analysis, laboratory experiments and field measurements). The use of simplified laboratory experiments allows me to limit the complexity of natural systems by identifying the main mechanisms controlling sediment transport.  Once these physical laws are established, I apply them to natural data to explain the morphology of the observed landscapes, and to predict their evolution.

In this seminar, I will present two examples of the application of my work. An experimental study highlighting the influence of input conditions (water and sediment flows, sediment properties) on the morphology of fluvial deposits (i.e. alluvial fan), as well as a theoretical analysis coupled with field measurements to understand the mechanisms of dune initiation.

Fri, 04 Nov 2022

14:00 - 15:00
L5

Isostasy at the planetary scale

Mikael Beuthe
(Royal Observatory of Belgium)
Abstract

Isostasy is one of the earliest quantitative geophysical theories still in current use. It explains why observed gravity anomalies are generally much weaker than what is inferred from visible topography, and why planetary crusts can support large mountains without breaking up. At large scale, most topography (including bathymetry) is in isostatic equilibrium, meaning that surface loads are buoyantly supported by crustal thickness variations or density variations within the crust and lithosphere, in such a way that deeper layers are hydrostatic. On Earth, examples of isostasy are the average depth of the oceans, the elevation of the Himalayas, and the subsidence of ocean floor away from mid-ocean ridges, which are respectively attributed to the crust-ocean thickness difference, to crustal thickening under mountain belts, and to the density increase due to plate cooling. Outside Earth, isostasy is useful to constrain the crustal thickness of terrestrial planets and the shell thickness of icy moons with subsurface oceans.

Given the apparent simplicity of the isostatic concept – buoyant support of mountains by iceberg-like roots – it is surprising that a debate has been going on for over a century about its various implementations. Classical isostasy is indeed not self-consistent, neglects internal stresses and geoid contributions to topographical support, and yields ambiguous predictions of geoid anomalies at the planetary scale. In the last few years, these problems have attracted renewed attention when applying isostasy to planetary bodies with an unbroken crustal shell. In this talk I will discuss isostatic models based on the minimization of stress, on time-dependent viscous evolution, and on stationary viscous flow. I will show that these new isostatic approaches are mostly equivalent and discuss their implications for the structure of icy moons.

Fri, 21 Oct 2022

14:00 - 15:00
L5

The mechanics of alluvial rivers

Olivier Devauchelle
(Institute de Physique du Globe de Paris)
Abstract

Rivers choose their size and shape, and spontaneously organize into ramified networks. Yet, they are essentially a channelized flow of water that carries sediment. Based on laboratory experiments, field measurements and simple theory, we will investigate the basic mechanisms by which rivers form themselves, and carve the landscapes that surround us.

Fri, 26 May 2023

11:45 - 13:15
N4.01

InFoMM Group Meeting

Anna Berryman, Constantin Puiu, Joe Roberts
(Mathematical Institute)
Fri, 24 Feb 2023

11:45 - 13:15
N4.01

InFoMM Group Meeting

Sophie Abrahams, Oliver Bond, Georgia Brennan, Brady Metherall
(Mathematical Institute)
Fri, 25 Nov 2022

11:45 - 13:15
N4.01

InFoMM Group Meeting

Markus Dablander, James Harris, Deqing Jiang
(Mathematical Institute (University of Oxford))
Subscribe to