Thu, 07 Jul 2022
12:00
C2

Resonances and unitarity from celestial amplitude

Dr Jinxiang Wu
((Oxford University))

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

We study the celestial description of the O(N) sigma model in the large N limit. Focusing on three dimensions, we analyze the implications of a UV complete, all-loop order 4-point amplitude of pions in terms of correlation functions defined on the celestial circle. We find these retain many key features from the previously studied tree-level case, such as their relation to Generalized Free Field theories and crossing-symmetry, but also incorporate new properties such as IR/UV softness and S-matrix metastable states. In particular, to understand unitarity, we propose a form of the optical theorem that controls the imaginary part of the correlator based solely on the presence of these resonances. We also explicitly analyze the conformal block expansions and factorization of four-point functions into three-point functions. We find that summing over resonances is key for these factorization properties to hold. This is a joint work with D. García-Sepúlveda, A. Guevara, J. Kulp.

Wed, 06 Jul 2022
12:00
C2

Pushing Forward Rational Differential Forms

Robert Moermann
(University of Hertfordshire)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

The scattering equations connect two modern descriptions of scattering amplitudes: the CHY formalism and the framework of positive geometries. For theories in the CHY family whose S-matrix is captured by some positive geometry in the kinematic space, the corresponding canonical form can be obtained as the pushforward via the scattering equations of the canonical form of a positive geometry in the CHY moduli space. In this talk, I consider the general problem of pushing forward rational differential forms via the scattering equations. I will present some recent results (2206.14196) for achieving this without ever needing to explicitly solve any scattering equations. These results use techniques from computational algebraic geometry, and they extend the application of similar results for rational functions to rational differential forms.

Why is productivity slowing down?
Goldin, I Koutroumpis, P Lafond, F Winkler, J Journal of Economic Literature volume 62 issue 1 196-268 (01 Mar 2024)
Adaptation to DNA damage, an asymptotic approach for a cooperative non-local system
Léculier, A Roux, P Acta Applicandae Mathematicae volume 180 issue 1 (21 Jun 2022)
A direct comparison of methods for assessing the threat from emerging infectious diseases in seasonally varying environments
Kaye, A Hart, W Bromiley, J Iwami, S Thompson, R Journal of Theoretical Biology volume 548 (16 Jun 2022)
Spitalfields Music Festival banner

J.S. Bach is sometimes described as the mathematician's musician. But why is that?

James Sparks is a professional mathematician here in Oxford; but he was also an organ scholar as an undergraduate in Cambridge and he is fascinated by the mathematical aspect of Bach's work.

On June 30th James will open the Spitalfields Music Festival 2022 with a talk on the 'Mathematical Genius of Bach'. He will be followed by the City of London Sinfonia playing the Goldberg Variations where that genius reaches its apogee.

There is a lot of construction, renovation and general moving of stuff going on around the University and City just now.

Now, no doubt it is all being done with 100% efficiency, but just in case here is the definitive 'work not getting done' tribute. Incidentally the song was recorded in the same studio where, a few months later, the Beatles changed the face of popular music.

Thu, 19 Jan 2023

14:00 - 15:00
L3

Bridging the divide: from matrix to tensor algebra for optimal approximation and compression

Misha Kilmer
(Tufts University)
Abstract

Tensors, also known as multiway arrays, have become ubiquitous as representations for operators or as convenient schemes for storing data. Yet, when it comes to compressing these objects or analyzing the data stored in them, the tendency is to ``flatten” or ``matricize” the data and employ traditional linear algebraic tools, ignoring higher dimensional correlations/structure that could have been exploited. Impediments to the development of equivalent tensor-based approaches stem from the fact that familiar concepts, such as rank and orthogonal decomposition, have no straightforward analogues and/or lead to intractable computational problems for tensors of order three and higher.

In this talk, we will review some of the common tensor decompositions and discuss their theoretical and practical limitations. We then discuss a family of tensor algebras based on a new definition of tensor-tensor products. Unlike other tensor approaches, the framework we derive based around this tensor-tensor product allows us to generalize in a very elegant way all classical algorithms from linear algebra. Furthermore, under our framework, tensors can be decomposed in a natural (e.g. ‘matrix-mimetic’) way with provable approximation properties and with provable benefits over traditional matrix approximation. In addition to several examples from recent literature illustrating the advantages of our tensor-tensor product framework in practice, we highlight interesting open questions and directions for future research.

Subscribe to