Tue, 31 May 2022

12:00 - 13:15
Virtual

Implementing Bogoliubov transformations beyond the Shale-Stinespring condition

Sascha Lill
(University of Tuebingen and BCAM Bilbao)
Abstract

Quantum many–body systems can be mathematically described by vectors in a certain Hilbert space, the so–called Fock space, whose Schroedinger dynamics are generated by a self–adjoint Hamiltonian operator H. Bogoliubov transformations are a convenient way to manipulate H while keeping the physical predictions in- variant. They have found widespread use for analyzing the dynamics of quantum many–body systems and justifying simplified models that have been heuristically derived by physicists.

In the 1960s, Shale and Stinespring derived a necessary and sufficient condition for when a Bogoliubov transformation is implementable on Fock space, i.e. for when there exists a unitary operator U such that the manipulated Hamiltonian takes the form U*HU. However, non–implementable Bogoliubov transformations appear frequently in the literature for systems of infinite size.

In this talk, we therefore construct two extensions of the Fock space on which certain Bogoliubov transformations become implementable, although they violate the Shale–Stinespring condition.

Image of Catarina/speaker at conference

The eleventh annual two and a half day conference held alternately in Oxford and Cambridge, and focusing on partial differential equations and analysis, took place this year on 11-13th April in the Mathematical Institute in Oxford.

Fri, 20 May 2022

16:00 - 17:00
L5

Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum

Guillermo Arias-Tamargo
(Oviedo)
Abstract

We study global 1- and (d−2)-form symmetries for gauge theories based on disconnected gauge groups which include charge conjugation. For pure gauge theories, the 1-form symmetries are shown to be non-invertible. In addition, being the gauge groups disconnected, the theories automatically have a Z2
global (d−2)-form symmetry. We propose String Theory embeddings for gauge theories based on these groups. Remarkably, they all automatically come with twist vortices which break the (d−2)-form global symmetry. 

Fri, 27 May 2022

16:00 - 17:00
N4.01

Deconfining N=2 SCFTs

Matteo Lotito
(University of Massachusetts)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

In this talk I will describe a systematic approach, introduced in our recent work 2111.08022, to construct Lagrangian descriptions for a class of strongly interacting N=2 SCFTs. I will review the main ingredients of these constructions, namely brane tilings and the connection to gauge theories. For concreteness, I will then specialize to the case of the simplest of such geometrical setups, as in the paper, even though our approach should be much more general. I will comment on some low rank examples of the theories we built, that are well understood by (many) alternative approaches and conclude with some open questions and ideas for future directions to explore.

Tue, 03 May 2022

14:00 - 15:00
L4

The structure of planar graphs

David Wood
(Monash University)
Abstract

This talk is about the global structure of planar graphs and other more general graph classes. The starting point is the Lipton-Tarjan separator theorem, followed by Baker's decomposition of a planar graph into layers with bounded treewidth. I will then move onto layered treewidth, which is a more global version of Baker's decomposition. Layered treewidth is a precursor to the recent development of row treewidth, which has been the key to solving several open problems. Finally, I will describe generalisations for arbitrary minor-closed classes.

Active filaments I: Curvature and torsion generation
Kaczmarski, B Moulton, D Kuhl, E Goriely, A Journal of the Mechanics and Physics of Solids volume 164 (10 May 2022)
Subscribe to