Mon, 23 May 2022

16:30 - 17:30
L5

Implosion mechanisms for compressible fluids with applications

Pierre Raphael
(University of Cambridge)
Abstract

I will review the series of recent results with Merle (IHES), Rodnianski (Princeton) and Szeftel (Paris Sorbonne) concerning the description of implosion mechanisms for viscous three dimensional compressible fluids. I will explain how the problem is connected to the description of blow up mechanisms for classical super critical defocusing models. 

Mon, 16 May 2022

16:30 - 17:30
L5

A quantitative approach to the Navier–Stokes equations

Tobias Barker
(University of Bath)
Abstract

Recently, Terence Tao used a new quantitative approach to infer that certain ‘slightly supercritical’ quantities for the Navier–Stokes equations must become unbounded near a potential blow-up time. In this talk I’ll discuss a new strategy for proving quantitative bounds for the Navier–Stokes equations, as well as applications to behaviours of potentially singular solutions. This talk is based upon joint work with Christophe Prange (CNRS, Cergy Paris Université).

Preface Chen, G Li, T Liu, C (12 Jun 2009)
Tue, 31 May 2022

15:30 - 16:30
L4

Hilbert scheme of points on manifolds and global singularity theory

Gergely Berczi
(Aarhus University)
Abstract

Global singularity theory is a classical subject which classifies singularities of maps between manifolds, and describes topological reasons for their appearance. I will start with explaining a central problem of the subject regarding multipoint and multisingularity loci, then give an introduction into some recent major developments by Kazarian, Rimanyi, Szenes and myself.

Fri, 27 May 2022

14:00 - 15:00
N3.12

Branching of representations of symmetric groups and Hecke algebras

Arun Soor
(University of Oxford)
Abstract

We will look at the branching of irreducible representations of symmetric groups from the perspective of Okounkov-Vershik, and then look at Hecke algebras, affine Hecke algebras and cyclotomic Hecke algebras, in particular how the graded Grothendieck groups of their module categories “are” irreducible highest weight modules for affine $sl_l$, where $l$ is the “quantum characteristic”, and the branching graph is a highest weight crystal (for affine $sl_l$). The Fock space realisation of the highest weight crystal will get us back to  the Young graph for in the case of the symmetric group that we considered at the beginning.

Mon, 13 Jun 2022

12:45 - 13:45
L1

TBA

Tom Melia
(Kavli IPMU)
Mon, 25 Apr 2022

12:45 - 13:45
L1

AdS Virasoro-Shapiro from dispersive sum rules

Joao Silva
(Oxford)
Abstract

We consider the four-point correlator of the stress-energy tensor in N=4 SYM, to leading order in inverse powers of the central charge, but including all order corrections in 1/lambda. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small alpha'/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.

Wed, 27 Apr 2022

16:00 - 17:00
L6

Embeddings of Trees and Solvable Baumslag-Solitar Groups

Patrick Nairne
(University of Oxford)
Abstract

The question of when you can quasiisometrically embed a solvable Baumslag-Solitar group into another turns out to be equivalent to the question of when you can (1,A)-quasiisometrically embed a rooted tree into another rooted tree. We will briefly describe the geometry of the solvable Baumslag-Solitar groups before attacking the problem of embedding trees. We will find that the existence of (1,A)-quasiisometric embeddings between trees is intimately related to the boundedness of a family of integer sequences. 

Subscribe to