Fri, 04 Mar 2022
16:00
N4.01

Infrared phases of QCD in two dimensions

Matthew Yu
(Perimeter Institute)
Further Information

It is also possible to join virtually via Teams.

Abstract

Understanding dynamics of strongly coupled theories is a problem that garners great interest from many fields of physics. In order to better understand theories in 3+1d one can look to lower dimensions for theories which share some properties, but also may exhibit new features that are useful to understand the dynamics. QCD in 1+1d is a strongly coupled theory in the IR, and this talk will explain how to determine if these theories are gapped or gapless in the IR. Moreover, I will describe what IR theory that UV QCD flows to and discuss the IR dynamics. 

Tue, 15 Feb 2022

14:00 - 15:00
C1

Discrete curvature on graphs from the effective resistance

Karel Devriendt
(University of Oxford)
Abstract

Measures of discrete curvature are a recent addition to the toolkit of network analysts and data scientists. At the basis lies the idea that networks and other discrete objects exhibit distinct geometric properties that resemble those of smooth objects like surfaces and manifolds, and that we can thus find inspiration in the tools of differential geometry to study these discrete objects. In this talk, I will introduce how this has lead to the development of notions of discrete curvature, and what they are good for. Furthermore, I will discuss our latest results on a new notion of curvature on graphs, based on the effective resistance. These new "resistance curvatures" are related to other well-known notions of discrete curvature (Ollivier, Forman, combinatorial curvature), we find evidence for convergence to continuous curvature in the case of Euclidean random graphs and there is a naturally associated discrete Ricci flow.

A preprint on this work is available on arXiv: https://arxiv.org/abs/2201.06385

Tue, 08 Mar 2022

16:00 - 17:00
C1

C*-simplicity for groupoids.

Sam Kim
(University of Glasgow)
Abstract

A Hausdorff and etale groupoid is said to be C*-simple if its reduced groupoid C*-algebra is simple. Work on C*-simplicity goes back to the work of Kalantar and Kennedy in 2014, who classified the C*-simplicity of discrete groups by associating to the group a dynamical system. Since then, the study of C*-simplicity has received interest from group theorists and operator algebraists alike. More recently, the works of Kawabe and Borys demonstrate that the groupoid case may be tractible to such dynamical characterizations. In this talk, we present the dynamical characterization of when a groupoid is C*-simple and work out some basic examples. This is joint work with Xin Li, Matt Kennedy, Sven Raum, and Dan Ursu. No previous knowledge of groupoids will be assumed.

Tue, 08 Feb 2022

16:00 - 17:00
Virtual

Nowhere scattered C*-algebras

Eduard Vilalta
(Universitat Autònoma de Barcelona)
Abstract

Scattered topological spaces and their C*-analogs, known as scattered
C*-algebras, have been studied since the 70's and admit a number of
interesting characterizations. In this talk, I will define nowhere
scattered C*-algebras as, informally, those C*-algebras that are very
far from being scattered. I will then characterize this property in
various ways, such as the absence of nonzero elementary ideal-quotients,
topological properties of the spectrum, and divisibility properties in
the Cuntz semigroup. Further, I will also show that these divisibility
properties can be strengthened in the real rank zero or the stable rank
one case.

The talk is based on joint work with Hannes Thiel.

Fri, 28 Jan 2022

16:00 - 17:00
Virtual

Applications of subfactor and categorical techniques to C*-algebras

Roberto Hernandez Palomares
(Texas A&M University)
Abstract

Q-systems were introduced by Longo to describe the canonical endomorphism of a finite Jones-index inclusion of infinite von Neumann factors. From our viewpoint, a Q-system is a unitary  version of a Frobenius algebra object in a tensor category or a C* 2-category. Following work of Douglass-Reutter, a Q-system is also a unitary version of a higher idempotent, and we will describe a higher unitary idempotent completion for C* 2-categories called Q-system completion. 


We will focus on the C* 2-category C*Alg with objects unital C*-algebras, 1-morphisms right Hilbert C*-correspondences, and 2-morphisms adjointable intertwiners. By adapting a subfactor reconstruction technique called realization, and using the graphical calculus available for C* 2-categories, we will show that C*Alg is Q-system complete.

This result allows for the straightforward adaptation of subfactor results to C*-algebras, characterizing finite Watatani-index extensions of unital C*-algebras equipped with a faithful conditional expectation in terms of the Q-systems in C*Alg. Q-system completion can also be used to induce new symmetries of C*-algebras from old. 

 

This is joint work with Quan Chen, Corey Jones and Dave Penneys (arXiv: 2105.12010).

Fri, 11 Mar 2022

14:00 - 15:00
L6

An example of the Lyndon-Hochschild-Serre spectral sequence

Anja Meyer
(University of Manchester)
Abstract

Spectral sequences are computational tools to find the (co-)homology of mathematical objects and are used across various fields. In this talk I will focus on the LHS spectral sequence, which we associate to an extension of groups to compute group cohomology. The first part of the talk will serve as introduction to both group cohomology and general spectral sequences, where I hope to provide and intuition and some reduced formalism. As main example, and core of this talk, we will look at the LHS spectral sequence associated to the group extension $(\mathbb{Z}/3\mathbb{Z})^3 \rightarrow S \rightarrow \mathbb{Z}/3\mathbb{Z}$, where $S$ is a Sylow-3-subgroup of $SL_2(\mathbb{Z}/9\mathbb{Z})$. In particular I will present arguments that all differentials on the $E^2$ page vanish.

Fri, 11 Feb 2022
16:00
C6

Renormalization Group Flows on Line Defects

Avia Raviv-Moshe
(Simons Center Stony Brook)
Further Information

It is also possible to join virtually via zoom.

Abstract

We will consider line defects in d-dimensional CFTs. The ambient CFT places nontrivial constraints on renormalization group flows on such line defects. We will see that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We will demonstrate this generalization in some concrete examples, including a flow between Wilson loops in 4 dimensions, and an O(3) bosonic theory coupled to an impurity in the large spin representation of the bulk global symmetry.

Tue, 22 Feb 2022

12:30 - 13:15
C5

Modelling laser-induced vapour bubbles in the treatment of kidney stones

Sophie Abrahams
(Mathematical Institute (University of Oxford))
Abstract

We present models of a vapour bubble produced during ureteroscopy and laser lithotripsy treatment of kidney stones. This common treatment for kidney stones involves passing a flexible ureteroscope containing a laser fibre via the ureter and bladder into the kidney, where the fibre is placed in contact with the stone. Laser pulses are fired to fragment the stone into pieces small enough to pass through an outflow channel. Laser energy is also transferred to the surrounding fluid, resulting in vapourisation and the production of a cavitation bubble.

While in some cases, bubbles have undesirable effects – for example, causing retropulsion of the kidney stone – it is possible to exploit bubbles to make stone fragmentation more efficient. One laser manufacturer employs a method of firing laser pulses in quick succession; the latter pulses pass through the bubble created by the first pulse, which, due to the low absorption rate of vapour in comparison to liquid, increases the laser energy reaching the stone.

As is common in bubble dynamics, we couple the Rayleigh-Plesset equation to an energy conservation equation at the vapour-liquid boundary, and an advection-diffusion equation for the surrounding liquid temperature.1 However, this present work is novel in considering the laser, not only as the cause of nucleation, but as a spatiotemporal source of heat energy during the expansion and collapse of a vapour bubble.
 

Numerical and analytical methods are employed alongside experimental work to understand the effect of laser power, pulse duration and pulse pattern. Mathematically predicting the size, shape and duration of a bubble reduces the necessary experimental work and widens the possible parameter space to inform the design and usage of lasers clinically.

Tue, 25 Jan 2022
14:00
Virtual

Induced Poset Saturation

Maria-Romina Ivan
(Cambridge)
Abstract

Given a fixed poset $\mathcal P$, we say that a family $\mathcal F$ of subsets of $[n]$ is $\mathcal P$-free if it does not contain an (induced) copy of $\mathcal P$. And we say that $F$ is $\mathcal P$-saturated if it is maximal $\mathcal P$-free. How small can a $\mathcal P$-saturated family be? The smallest such size is the induced saturation number of $\mathcal P$, $\text{sat}^*(n, \mathcal P)$. Even for very small posets, the question of the growth speed of $\text{sat}^*(n,\mathcal P)$ seems to be hard. We present background on this problem and some recent results.

Subscribe to