Wed, 19 Jan 2022

16:00 - 17:00
C2

Local-to-Global rigidity of quasi-buildings

Amandine Escalier
(University of Münster)
Abstract

We say that a graph G is Local-to-Global rigid if there exists R>0 such that every other graph whose balls of radius R are isometric to the balls of radius R in G is covered by G. Examples include the Euclidean building of PSLn(Qp). We show that the rigidity of the building goes further by proving that a reconstruction is possible from only a partial local information, called “print”. We use this to prove the rigidity of graphs quasi-isometric to the building among which are the torsion-free lattices of PSLn(Qp).

Wed, 10 Nov 2021

16:00 - 17:00
C5

Orbifolds - more than just spaces

Christoph Weis
(University of Oxford)
Abstract

Orbifolds are a generalisation of manifolds which allow group actions to enter the picture. The most basic examples of orbifolds are quotients of manifolds by (non-free) finite group actions.
I will give an introduction to orbifolds, recalling a number of philosophically different but mathematically equivalent definitions. For starters, I will try to convince you that "a space locally modelled on a quotient of R^n by a finite group" is misleading. I will draw many pictures of orbifolds, make the connection to complexes of groups, and explain the definition of a map of orbifolds. In the process, I hope to demystify the definition of the orbifold fundamental group, the orbifold Euler characteristic and orbifold cohomology.

Wed, 03 Nov 2021

16:00 - 17:00
C5

Grothendieck-Teichmuller Theory: Mapping Class Groups and Galois Groups

Luciana Basualdo Bonatto
(University of Oxford)
Abstract

In this talk, I will discuss the important Grothendieck conjecture which originated Grothendieck-Teichmuller Theory, a bridge between Topology and Number Theory. On the geometric side, there is the study of automorphisms of mapping class groups that satisfy compatibility conditions with respect to subsurface inclusions. On the other side, there is the study of the absolute Galois group of the rationals, one of the most important objects in Number Theory today.
In my talk, I will introduce these objects and discuss the recent progress that has been made in understanding such automorphisms of mapping class groups. No background in Number Theory or Galois Theory is required.

Wed, 27 Oct 2021

16:00 - 17:00
C5

Finiteness properties of groups

Sam Fisher
(University of Oxford)
Abstract

Finiteness properties of groups provide various generalisations of the properties "finitely generated" and "finitely presented." We will define different types of finiteness properties and discuss Bestvina-Brady groups as they provide examples of groups with interesting combinations of finiteness properties.

Wed, 17 Nov 2021

16:00 - 17:00
C5

Cubulating groups acting on polygonal complexes

Calum Ashcroft
(University of Cambridge)
Abstract

Given a group G acting on a CAT(0) polygonal complex, X, it is natural to ask whether the structure of X allows us to deduce properties of G. We discuss some recent work on local properties that X may possess which allow us to answer these questions - in many cases we can in fact deduce that the group is a linear group over Z.

Wed, 20 Oct 2021

16:00 - 17:00

Proper CAT(0) actions of unipotent-free linear groups

Sami Douba
(McGill University)
Abstract

Button observed that finitely generated linear groups containing no nontrivial unipotent matrices behave much like groups admitting proper actions by semisimple isometries on complete CAT(0) spaces. It turns out that any finitely generated linear group possesses an action on such a space whose restrictions to unipotent-free subgroups are in some sense tame. We discuss this phenomenon and some of its implications for the representation theory of certain 3-manifold groups.

Wed, 13 Oct 2021

16:00 - 17:00
C5

One-relator groups

Monika Kudlinska
(University of Oxford)
Abstract

Given an arbitrary group presentation, often very little can be deduced about the underlying group. It is thus something of a miracle that many properties of one-relator groups can be simply read-off from the defining relator. In this talk, I will discuss some of the classical results in the theory of one-relator groups, as well as the key trick used in many of their proofs. Time-permitting, I'll also discuss more recent work on this subject, including some open problems.

Mon, 11 Oct 2021

16:00 - 17:00
L3

Arbitrage-free neural-SDE market models

SAMUEL COHEN
(University of Oxford)
Abstract

Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying financial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate neural SDE models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model, and will discuss some initial results using real data.

 

Based on joint work with Christoph Reisinger and Sheng Wang

Tue, 19 Oct 2021
12:00
L5

Why Null Infinity Is Not Smooth, and How to Measure Its Non-smoothness

Leonhard Kehrberger
(Cambridge)
Abstract

Penrose's proposal of smooth conformal compactification is not only of geometric elegance, it also makes concrete predictions on physically measurable objects such as the "late-time tails" of gravitational waves.  At the same time, the physical motivation for a smooth null infinity remains itself unclear. In this talk, building on arguments due to Christodoulou, Damour and others, I will show that, in generic gravitational collapse, the "peeling property" of gravitational radiation is violated (so one cannot attach a smooth null infinity). Moreover, I will explain how this violation of peeling is in principle measurable in the form of leading-order deviations from the usual late-time tails of gravitational radiation.

This talk is based on https://arxiv.org/abs/2105.08079, https://arxiv.org/abs/2105.08084 and … .

It will be a hybrid seminar on both zoom and in-person in L5. 

Subscribe to