sl_2-triples in classical Lie algebras over fields of positive characteristic
Abstract
Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.
Non-commutative Krull dimension and Iwasawa algebras
Abstract
The Krull dimension is an ideal-theoretic invariant of an algebra. It has an important meaning in algebraic geometry: the Krull dimension of a commutative algebra is equal to the dimension of the corresponding affine variety/scheme. In my talk I'll explain how this idea can be transformed into a tool for measuring non-commutative rings. I'll illustrate this with important examples and techniques, and describe what is known for Iwasawa algebras of compact $p$-adic Lie groups.
Congratulations to Oxford Mathematics and Worcester College undergraduate Ellen who was a joint winner of the British Society for the History of Mathematics Undergraduate Essay Prize for her essay 'The "analysis" of a century: Influences on the etymological development of the word "analysis" in a mathematical context to 1750'.
Isoperimetric sets in manifolds with nonnegative Ricci curvature and Euclidean volume growth
Abstract
I will present a new existence result for isoperimetric sets of large volume on manifolds with nonnegative Ricci curvature and Euclidean volume growth, under an additional assumption on the structure of tangent cones at infinity. After a brief discussion on the sharpness of the additional assumption, I will show that it is always verified on manifolds with nonnegative sectional curvature. I will finally present the main ingredients of proof emphasizing the key role of nonsmooth techniques tailored for the study of RCD spaces, a class of metric measure structures satisfying a synthetic notion of Ricci curvature bounded below. This is based on a joint work with G. Antonelli, M. Fogagnolo and M. Pozzetta.
Junior Algebra and Representation Theory welcome
To start the new academic year, we will hold an informal event for postgraduate students and postdocs to meet, catch up, and drink coffee. The location of this event has changed - we will meet at 3pm in the Quillen Room (N3.12).